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Summary 
Toward the project objectives, we have created a 29-date 161-band HyspIRI-like hyperspectral dataset 
based on Hyperion images in VSWIR over the eastern side of the Island of Hawaii at 60-m spatial 
resolution between 2005-01-17 and 2010-12-30.  In the following, this dataset is referred to as HyspIRI-
161 dataset.  This unique dataset included both pre-eruption and post-eruption periods for the recently 
opened (March 2008) vent at Kilauea volcano’s Halemaumau pit crater, Hawaii.    This image sequence 
was atmospherically corrected, co-registered to subpixel accuracy, and used to produce auxiliary 
derived products:  clouds/shadow masks, and 25 conventional vegetation indexes.   

Furthermore, we developed iProsail, a Matlab-based toolbox for computationally efficient inversion of 
PROSAILH  radiative transfer model (aka. PROSAIL-5B),  which couples PROSPECT-5 and 4SAIL (Verhoef 
2007).  Our toolbox is based on numerical techniques for constrained non-linear optimization available 
in Matlab.   We applied iProsail  to 128-band spectra of HyspIRI-161 images  and calculated spatially 
explicit measurements of vegetation biophysical/biochemical properties and extent on an 
unprecedentedly massive spatial  and temporal scales.  Using these retrievals we gained a better 
understanding of the issues and sources of uncertainties and biases in the retrieved biochemistry and 
structure over satellite image time series.  In particular, we found that PROSAILH inversion results are 
very sensitive to the sun-view geometry,  and soil spectrum brightness. We also determined that HyspIRI 
spectral resolution is sufficiently high to maintain high accuracy of computationally efficient inversion 
approaches. 
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Furthermore, using a subset of the HyspIRI-like images time series we also illustrated  over a selected 
regions that HyspIRI will be able to detect and map changes in vegetation properties near the volcano, 
which may be caused by volcanic activity.   A conclusion about the cause-effect relationship between 
changes in the remotely estimated vegetation properties and the degassing is beyond the scope of our 
research.  However, we have provided the evidence that HyspIRI, with its high frequency and spectral 
resolution and coverage, will help generate useful spatially explicit hypotheses for subsequent multi-
disciplinary studies of the relationship between vegetation and volcanoes. 

1. Introduction 
The central Objective of this project is to  

Demonstrate that vegetation-volcano relationship will be observable by the future HyspIRI 
mission 

We are focusing on investigating the potential impacts of the recently opened (March 2008) vent at 
Kilauea volcano’s Halemaumau pit crater, Hawaii, on the vegetation surrounding the volcano.  During 
2008-2009 this vent emitted large amounts of gasses in the atmosphere, with potential impacts on the 
vegetation in proximity to the volcano.    

Out work was planned to advance in three stages aimed at the following sub-goals: 

I.a. Characterize biophysical/biochemical and structural properties of the vegetation on the eastern 
side of the Big Island; 

I.b. Determine the average spatial pattern of SO2 distribution, based on the state-of-the-art high-
resolution models for concentration and dispersion of volcanic gas and aerosol 

I.c. Determine evidence of dependence/correlation/co-occurrence that exists between vegetation 
type and stress and the average SO2 distribution pattern.   

2. Research Activities  

2.1.  Study area and HyspIRI-161 image sequence  
The study was conducted over the Eastern Island of Hawaii based on the data from recent Hyperion 
acquisitions (Figure A1).  Although we preliminarily identified ~150 swaths of Hyperion data collected 
during Jan 2005 to Dec 2010 over the eastern and south-eastern part of the Island, many of the images 
from Hyperion that we planned to include in the analysis, were unsuitable due to high cloud cover or 
difference in the smile effect bias between different flightlines.   We selected 29 hyperspectral images 
with low-to moderate cloud cover that cover dry and wet seasons and both periods: before the new 
vent opened (Jan 2005 –Feb  2008) and after the vent opened (March 2008 – Dec 2010).   Figure A2 
illustrates the temporal coverage of the HyspIRI-161 image sequence.  Hyperion does not  have thermal 
bands, and we planned to augment Hyperion with a few non-cloudy ASTER scenes nearly-co-occurring 
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with Hyperion overflights. However, we were unable to do so due to the extensive effort to compile, 
preprocess, and analyze the multi-temporal hyperspectral data of HyspIRI-161 and not enough time to 
do a comparable effort on the thermal data. 

2.2.  Algorithm/software development for PROSAILH inversion over remote 
sensing images 
Full numerical inversion of radiative transfer models (RTM), such as PROSAILH,  on massive scales of 
satellite image sequences has not been ever attempted, to the best of our knowledge.   Although orders 
of magnitude faster than look-up table approach to PROSAILH inversion, the numerical inversion is a 
computer-intensive procedure, too.  Furthermore, there are many factors that influence the quality and 
computational efficiency of PROSAILH inversion: ranging from purely technical (e.g. accounting for 
missing values for some bands for some pixels, variations in input data format,  or memory 
management), to more delicate (e.g. choosing error functional to be minimized, initial values and 
constraints for some variables,  a stopping criterion for the iterative process, etc.).      

We have developed a Matlab-based software toolbox, called iProsail,  for PROSAILH numerical inversion 
by constrained non-linear least squares optimization and tested iProsail for use with Hyperion, AVIRIS, 
and MASTER remote sensing images.  The software toolbox is functional now and reasonably stable.  
This toolbox is based on the PROSPECT-5 and 4SAIL forward Matlab code publicly available at 
http://teledetection.ipgp.jussieu.fr/prosail/.  We have also incorporated a recent updated code of 
PROSAILH  from Dr. J-B Feret with improvements of leaf inclination distribution function (LIDF) 
estimation.  This code implements a finer scale tabulation of the average leaf inclination angle (ALA)  for 
high angles (closer to 90°), under the elliptical model of LIDF.   

In this report,  we present PROSAILH inversion with respect to the following parameters:  

– leaf structure parameter,  
– chlorophyll a+b content, 
– carotenoids content, 
– brown pigments content, 
– equivalent water thickness, 
– dry matter content, 
– average leaf angle (under elliptical LIDF model), 
– leaf area index, 
– hot spot coefficient. 

Below in this document, the vector of parameter is generically referred to as θ.  Other parameters of the 
PROSAILH model were assumed known fixed constants (e.g. sun-view angles or diffused radiation 
fraction).  Table 1 provides complete information about parameters and the constrained numerical 
inversion options used to invert PROSAILH with respect to θ.  Furthermore, 33 of 161 bands (430 to 460 
nm and 1990 to 2320 nm) of HyspIRI-161 were not used for PROSAILH inversion to very low signal-to-
noise ratios.   Thus, the inversion used only 128 bands of HyspIRI-161.   

http://teledetection.ipgp.jussieu.fr/prosail/
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2.2.1. Computational aspects:  HyspIRI spectral resolution is sufficiently high to enable 
computationally economical numerical inversion modes. 
Numerical inversion of PROSAILH is an iterative process that starts with the input spectrum ρ(λs) and  
initial parameters vector θ0.  At each iteration a numerical inversion algorithm runs PROSAILH in a 
forward mode a number of times to improve the value of θ.  In every run, PROSAILH uses a set of pre-
determined specific absorption coefficient spectra  τ(λ) of biochemical constituents (pigments , water, 
and dry matter, see Figure D) to model a reflectance spectrum ρm(λ, θ).  This spectrum needs to be 
convolved with the sensor response function and resampled, resulting in a sensor-like modeled 
spectrum ρm(λs, θ) which can be compared with ρ(λs).  In  a standard approach,  for each biochemical τ(λ) 
is a 2100-element vector (λ being sampled at 1nm step) and so is the resulting  ρm(λ, θ), leading to 
considerable computational challenges due to hundreds-to-thousands of iterations typically needed for 
inversion.   Future operational inversion of PROSAILH over HyspIRI images, necessitates improvement in 
the inversion techniques, without significantly reducing the inversion accuracy.  

To improve efficiency, we suggest modifying the inversion approach as follows:  we smoothed and 
resampled τ(λ) once  and used the sensor-like τ(λs) in PROSAILH, thereby generating  ρm(λs, θ) directly. In 
other words, we run PROSAILH at the HyspIRI spectral resolution, bypassing generation of auxiliary 1-nm 
resolution spectra.   This produces a nearly order of magnitude reduction in processing time.   Does the 
proposed modification lead to significantly different inversion results?  Our experiment with HyspIRI-161 
image time series indicates that the largest difference was observed in Chl-ab estimation, with relative 
error varying between 3-6% for different dates (see Figure E1, for example).  For other parameters the 
differences are an order of magnitude smaller and thus the results are virtually identical.  

Importantly,  for sensors at low spectral resolution (such as MASTER) , the inversion using MASTER-like 
absorption spectra results in large spectrum modeling residuals, especially in VIS range (Figure E2) , and 
large biases for most of the retrieved parameters (Figure E3).   

2.2.2. Choice of  soil spectrum 
By running PROSAILH inversion with the input soil spectra scaled by different scale factors (Figure F1), 
we observed that brightness of background soil spectrum for PROSAILH inversion critically influences 
estimates of θ.  Figure F2 illustrates this point by the example of brown pigment concentration (Cbrown).  
Other interesting correlations between soil brightness and θ that we consistently observed in our 
experiments are summarized in Table 2. 

2.3.  Data processing and compiling HyspIRI-161 image sequence and ancillary 
datasets 

2.3.1. Image co-registration across time  
To construct a HyspIRI-like image sequence we used L1GsT ortho-corrected and geo-referenced 
Hyperion images. Unfortunately, these georeferenced images often suffer from residual misalignment 
by up to hundreds of meters (or several pixels), introducing additional complexities to subsequent multi-
temporal analyses.   Therefore, we additionally co-registered the Hyperion images using an automated 
image registration technique (Koltunov et al. 2012) that combines robust band-wise compensation for 



5 
 

radiometric differences in images (Koltunov et al. 2008) with an iterative gradient-based video-sequence 
alignment method by Irani (2002), under the affine image motion model.   As a result of the image co-
registration, the residual pixel misregistration was markedly reduced to sub-pixel level (estimated range 
of residual displacement 0-0.3 pixels) allowing more accurate analysis of the changes in vegetation 
conditions.   

2.3.2. Atmospheric Correction  
The Hyperion image sequence was atmospherically corrected with ATCOR software with the following 
options: tropical atmosphere class, water vapor =3-5 gr/cm2; Visibility = 80 km; rural aerosol model.  
Figure B shows examples of averaged vegetation spectra after correction.  As can be seen in Figure B, 
the corrected spectra exhibit the typical absorption features of leaf pigments in the 400- to 700-nm 
region and liquid water  in the SWIR region (e.g. at 970, 1130, and  1200 nm).  Relatively low reflectance 
values across the spectrum can be attributed to shadowing caused by low sun angle (~40 degrees) and 
tall, heterogeneous canopies, resulting in substantial shadowing at different spatial scales, and possible 
residual errors of ATCOR-based correction. 

2.3.3. Cloud, plume, and shadow mapping 
Each image in the HyspIRI-161 sequence was processed independently for cloud, plume and cloud 
shadow delineation.  We used a supervised classification method, in which the training samples for 
classes CLEAR, CLOUD, SHADOW, and PLUME were input to a supervised classifier that models each 
class as a Gaussian Mixture with unrestricted covariance structure of the mixture components and 
estimates the data distribution parameters using the Expectation-Maximization algorithm (Dempster et 
al. 1977), with the Bayesian Information Criterion (Schwarz, 1978) used to select the class-conditional 
mixture models.  The Bayes classifier was intentionally biased toward under-classifying clear pixels by 
accepting class CLEAR only if its posterior probability exceeded 90%.  Figure C displays an example of the 
resulting classification images.     

2.3.4. Empirical radiometric normalization of reflectances to compensate for BRDF 
Atmospherically corrected reflectance spectra for different images exhibit substantial variability in 
overall brightness (Figure G1, left).   These differences could be attributed to varying sun-view geometry 
for different images, and also potential biases in atmospheric correction.   Using a normalized-difference 
VI would partly mitigate the impact of this variability on the change analysis.  In contrast, PROSAILH 
attempts to use the input sun-view geometry information to account for BRDF effect on reflectance 
spectra.     Our experiments indicate that unfortunately, PROSAILH did not do this job perfectly with the 
HyspIRI-161 images, and the resulting retrieved time series of θ(t) were greatly affected by the sun-view 
geometry.  Figure G2 (top row) illustrates this phenomenon in the example of one of the most critical 
structural parameter, θALA (average leaf angle), which is totally unrealistically estimated as ~0° 
(horizontal leaves and canopies) over large clear-sky image areas.  

To further understand and reduce these effects, for each image with the timestamp ti , we statistically 
estimated a relative normalization factor β(ti) that radiometrically normalizes the reflectance toward 
baseline image  (chosen to be image #26  with tbas=2010.01.16).  Specifically,  for each  reflectance band 
at wavelength λk, we assumed the model: 
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β(ti)ρ(λk, ti) = ρ(λk, tbas)   

To mitigate the effects of substantial noise inherited from Hyperion, undetected  cloud/shadow, and 
surface changes, we estimated β by a robust regression of the median spectra of  ~9,000-13,000 pixels 
(depending on data availability at tbas and ti).  Only VIS spectral bands were used to calculate β(ti).  The 
obtained values for the coefficients β(ti) are listed in the last column of Table 3.  Figure G3 illustrates 
that images with similar sun-view geometries (e.g. 2005.01.17 and 2007.01.20, or 2005.06.19, 
2006.06.07, and 2007.07.06) always have similar values of β (a proxy for relative brightness), whereas 
for images with dissimilar geometries this is generally not the case.  Figure G2 (bottom row) shows that 
relative normalization markedly improves inversion (the normalized spectra are shown in Figure G1, 
right).  On the other hand, there is still a residual instability in the θALA  (Figure G2) and other parameters, 
esp. θCab and θCar (not shown).  This can be explained by the fact that we use a single image-wide 
empirical correction coefficient, whereas the surface structure generally varies from pixel to pixel.  Also, 
our empirical normalization implicitly over-simplifies the BRDF of the surface to be wavelength-
independent.  The inversion results presented in this report are obtained with a BRDF-normalized 
sequence, unless directly stated otherwise. 

2.4.  Vegetation Change Analysis with HyspIRI-like images and PROSAILH. 

2.4.1. Vegetation-volcano relationship analysis  
Unfortunately, due to delayed funding on the side of our collaborators from the Univ. of Hawaii, the 
HYSPLIT model outputs are available only starting from summer 2010 after SO2 releases from 
Halemaumau vent dropped significantly, compared to the high volume emissions observed in late 2008 
through late 2009.  Also, since we were using historic data, we did not have concurrent chemistry data 
to validate the retrievals from HyspIRI-161 data.  Therefore, we used a different approach to assess 
changes in vegetation cover and conditions that is similar conceptually to the methods used in previous 
studies (Giglio et al.  2003, Koltunov et al. 2009).  Specifically, we investigated whether the dynamics of 
the vegetation properties in proximity of the Kilauea crater was significantly different than that of a 
large “baseline”  vegetated area that are distant from the volcano.  A limitation of this approach is that 
small-magnitude temporal changes in the inspected region can be masked by changes in the same 
direction from other causes in the baseline region (type II error) or overemphasized due to the opposite-
direction changes in  the baseline region (type I error).  The advantage of this approach, however, is that 
it minimizes the temporally variable image-wide biases in vegetation parameter estimation.  Some of 
these biases are caused by varying sun-view geometry and BRDF and were discussed above in sect. 
2.X.Y.  With large number of pixels for which PROSAILH was inverted, conservative detection of clear-sky 
pixels,  and the use of robust statistics, we estimated the baseline time series for the parameter  vector 
θ(t), which we denote θb(t), as the 20% trimmed mean value over clear-sky and non-shadowed pixels in 
a baseline ROI (Figure H).  The resulting time series for the relative value θrel(s,t) at a pixel location s is 
then defined by:    

θrel(s,t)   = θ(s,t) / θb(t). 
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Under the assumption of no disturbance, for any given pixel s,  θrel(s,t) = c(s), i.e. temporally invariant, 
and therefore there would be no significant differences between the observed values of θrel(s,t).   

2.4.2. What HyspIRI-161 + PROSAILH think has happened to vegetation near the volcano 
Our experiments have indicated that time series of vegetation biophysical parameters estimated by 
PROSAILH inversion with HyspIRI-161 spectra allows one to detect vegetation changes and generate 
useful spatially explicit hypotheses about their nature and possible links with volcanic activity. 

To initially assess our estimates of canopy biochemistry and structure, we used information from 
previous studies in this area  (Asner et al. 2006, 2008).  These studies used 4 sites representing two 
dominant overstory species:   Metrosideros Polymorpha (MP) and Myrica Faya (Figure J).   According to 
ground  measurements, Metrosideros forests generally lower LAI (3–6) and have lower leaf water 
content than Myrica (LAI> 5),  (Asner et al. 2006, Asner and Vitousek 2005).   The arrows in Figure K1 
point to the site locations and illustrate that LAI  estimated by our PROSAILH inversion correctly 
represent the LAI differences between these species, however the LAI values are generally 
underestimated.   Similarly, Cw  (i.e. the estimates of equivalent water thickness) for Myrica sites is 
greater than Cw of M. Polymorpha, as can be seen in Figure K2. 

Furthermore, we consider three ROIs labeled “C”, “S”, and “D1” that are shown in Figure H.    As can be 
seen in the available high-resolution imagery of these regions (Figure L1),  the canopy cover density and 
possibly biochemical properties  of these regions substantially changed between 2002/04/19  and 2010-
2011.  The PROSAILH inversion with HyspIRI-161 images time series provides additional information 
about the biochemical features and the dynamics of these changes.  Figure L2 shows a zoomed image 
time series of θrel(s,t) for LAI, Cw, Cbrown and Chl/Cw  over these ROIs during wet season.   The relative 
reduction in LAI and Cw, and increase in Cbrown and Chl/Cw ratio become apparent over the southern parts 
of these ROIs in the first post-eruption image (2008.12.06) and the damaged area progressively expands 
northward from that date on. 

Some of these changes provide a sufficiently strong signal to influence the average time series of for the 
entire ROI.  Figures MC, MS, and MD1 show their respective average θ time series for LAI Cw, CWC 
(canopy water), Cab, Car, and Cbrown.  In each Figure, a plot in the left column shows the average θ(t) and 
θb(t), i.e. the 20% trimmed mean value of for the baseline ROI shown in Figure H.  Each plot in the right 
column shows the corresponding ratio:  θrel(s,t).      

Furthermore, we performed two-sample t-tests of significance for the change in the θrel(s,t) between 
pre-eruption and post-eruption period of the entire ROI as whole.  The results presented in Table 4 
provide evidence of variable strength for decrease in LAI, CWC (canopy water), and Car, and increase in 
Cbrown and Cab.  Some of these behaviors are consistent with damage, however, for some of the 
parameters (such as Cab, Car) we doubt that PROSAILH retrievals were accurate.  Alternatively, the 
apparent significant increase in Cab for remaining plants can be explained by their compensation 
response to reduction in LAI.  Future studies and field data will be needed to resolve this uncertainty.  

Spatio-temporal patterns of degradation that are similar to those shown in Figure L2 are also observable 
in the dry season θ(t) of degradation, however the patterns there are more noisy, we believe due to less 
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accurate relative normalization of post-eruption dry season images with sun-view geometries that  are 
very dissimilar from those of pre-eruption dry season images.  

3. Conclusions and Recommendations 
In this project, we used PROSAILH (PROSPECT-5 + 4SAIL) radiative transfer model inversion over 128 
band image time series from HyspIRI-161 at 60m spatial resolution to characterize vegetation dynamics 
near the Kilauea crater, the Island of Hawaii.   Despite data quality problems, variable cloud cover, 
dynamic angular effects, and lack of concurrent field data,  we were able to detect changes in spatio-
temporal patterns both on leaf and canopy level and these changes were consistent with increased 
vegetation stress for most comparisons.   The changes in the LAI retrievals are consistent with the 
foliage reduction observed in available high resolution images of the area.  The ability of PROSAILH and 
our inversion method to adequately represent gradients of LAI and Cw is indirectly supported by 
previous field measurements and observations in the study area (Asner & Vitousek, 2005;  Asner et al.,  
2006).    In the selected sites, the timing of the first detection of these disturbances (2008.12.06) falls at 
the beginning of the elevated activity period of the Halemaumau vent.   Thus, this work demonstrates an 
important potential application of HyspIRI data to monitor sub-visual to sub-lethal types of vegetation 
injury from pollution or other environmental stressors.   

Furthermore, this work has advanced our understanding of various aspects of retrieving canopy 
biochemistry and structure from hyperspectral satellite imagery, especially for multitemporal settings.  
It is increasingly clear that to accurately retrieve chemistry and structure  from reflectance data requires 
that the scattering properties of a canopy under varying view angles are addressed.  We show that 
major artifacts occur as a consequence of data from differing BRDF and sun-view geometry, at least 
partly due to changing canopy shadowing and exposure of soil substrate.    One way to address variable 
sun-view geometry would be to plan for HyspIRI BRDF products, such as Nadir-BRDF adjusted 
reflectance, similar to the corresponding MODIS products.  Another important issue is the relationship 
between computational efficiency  and accuracy of operational numerical inversion of PROSAILH.  Our 
experiments indicated that for computational efficiency purposes,  during the inversion the PROSAILH 
can be effectively run at HyspIRI spectral resolution (10 nm) without reduction in accuracy of the 
retrievals.   This appears to be a an interesting  subject  for future investigation.   All in all, we would like 
to additionally emphasize that we believe that PROSAILH needs significant work before it can be reliably 
inverted operationally on a time series of HyspIRI data.  We suggest that the scientific community needs 
to invest additional research efforts into improving canopy radiative transfer models and model 
inversion, to maximize the benefits of HyspIRI from the first days of its operation. 

Although with the Hyperion-derived HyspIRI-like image time series we were able to detect relative 
changes in vegetation cover and conditions near the volcano,  we need to have more frequent temporal 
observations in order to more accurately characterize the timing and dynamics of response to these 
disturbances and reduce the underlying uncertainties.     We look forward to the repeat hyperspectral 
observations from the future HyspIRI mission.   
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Figures and Tables 

Figure A1: Spatial coverage of Hyperion datasets available for 2005-2010 in 
the Eastern part of the Island of Hawaii 
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Figure A2: Temporal coverage of the HyspIRI-161 dataset  
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Figure B: Example of ATCOR-corrected  HyspIRI-like spectra: Vegetation 
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Figure C: Example of  Cloud, Plume, and Shadow classification images 
developed in this project 
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Figure D: Specific absorption coefficient spectra used by PROSPECT-5 
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Figure E1: Effect of running PROSAILH at the laboratory (1-nm) and HyspIRI 
(10 nm) resolution on Chl-a,b retrieval 
Chlorophyll a,b concentrations estimations by PROSAILH inversion with laboratory-like (left) and 
HyspIRI-like (right) absorption coefficient spectra  τ(λ).  Relative error  ≅ 3%. Dark blue color represent 
pixels that were not processed due to clouds/shadows or no satellite data coverage or values close to 
zero.  
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Figure E2: Effect of running PROSAILH at the sensor resolution, in case of 
MASTER data:  observed vs. modeled spectra  
Effect of  running PROSAILH at the sensor resolution, in case of MASTER data over Belridge almond 
and pistachio orchards in San Joaquin Valley, CA (Cheng et al. 2013):  observed vs. modeled spectra.  
Each line represents a median spectrum of 1000-5000 pixels in the MASTER image.   Dashed lines 
labeled “modeled-M-#”” represent spectra that are modeled by PROSAILH that is run at the low 
resolution MASTER sensor resolution (see sect. 2.2.1).  Spectra labeled “modeled-L-#”  are obtained 
when PROSAILH generates spectra at high (laboratory) resolution of 1nm. Note the substantial 
differences in the approximation accuracy for the observed input spectra. 
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Figure E3: Effect of running PROSAILH at the sensor resolution, in case of 
MASTER data  
Effect of running PROSAILH at the sensor resolution, in case of MASTER sensor.  Note significant and 
non-uniform differences in the inversion results 
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Figure F1: Soil spectra: the actually used one and the scaled ones 
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Figure F2: Cbrown retrievals under different brightness of soil spectrum  
Note the overall decrease in Cbrown  with brightening of the soil spectrum. Dark blue color represent 
pixels that were not processed due to clouds/shadows or no satellite data coverage or values close to 
zero. 
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Figure G1: Brightness variability across images of the HyspIRI-161 sequence  
Brightness variability across images of the HyspIRI-161 sequence before (left) and after relative 
normalization.  Sun-view geometry of images  dated 2005.01.17 and 2007.01.20 are very similar (see 
also Table 3 and Figure G3) 
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Figure G2: Instability of PROSAILH inversion for images with substantially 
varying sun-view geometry, in the example of Average Leaf Angle (ALA) 
Instability of PROSAILH inversion for images with substantially varying sun-view geometry, in the 
example of Average Leaf Angle (ALA).  Top row:  inversion using non-normalized reflectance images. 
Bottom row:  inversion using empirically normalized images.  Note the short time intervals between 
first three dates.  Dark blue color represent pixels that were not processed due to clouds/shadows or 
no satellite data coverage or values close to zero.    

 



23 
 

Figure G3: Sun-view geometries vs. empirical normalization coefficient β  
Correspondence between sun-view geometries and statistically estimated relative normalization 
factor β (cf. Table 2).  The colors representing the sun-view geometries is obtained by RGB-
compositing sensor look, solar elevation, and relative solar azimuth angles.  Note that similar sun-
view geometries always have close values of β (the opposite statement does not hold, in general). 
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Figure H: ROIs 
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Figure J1:  Leaves and Canopies of Metrosideros Polymorpha and Myrica Faya
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Figure K1:  LAI retrieval from PROSAILH for Metrosideros Polymorpha and 
Myrica Faya sites of Asner et al. 2006: note that the estimated LAI is generally 
higher for Myrica regions 
Dark blue color represent pixels that were not processed due to clouds/shadows or no satellite data 
coverage or values close to zero. 
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Figure K2:  Cw retrieval from PROSAILH for Metrosideros Polymorpha and 
Myrica Faya sites of Asner et al. 2006: note that the estimated Cw is generally 
higher for Myrica regions . 
Dark blue color represent pixels that were not processed due to clouds/shadows or no satellite data 
coverage or values close to zero. 

 

  



28 
 

Figure L1: High-resolution images of ROIs  (cf. Figure L2) 

 

  



29 
 

Figure L2:  Zoomed image time series of the ratio to baseline ROI for selected 
vegetation properties during wet season before and after the eruption (note 
the apparent change in spatial pattern, consistent with vegetation degradation 
observable in Figure L1) 
Dark blue color represent pixels that were not processed due to clouds/shadows or no satellite data 
coverage or values close to zero. 
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Figure MC: ROI “C” Mean Time series of PROSAILH parameters vs. Baseline ROI  
ROI “C”: Mean time series of PROSAILH parameters retrieved from HyspIRI-161 images vs. the 
Baseline ROI.    Wet season and dry season retrievals are colored in blue and red color, respectively.  
Red vertical line in each plot indicates the timing  of Halemaumau vent opening   (2008.03.19).  
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Figure MS: ROI “S” Mean Time series of PROSAILH parameters vs. Baseline ROI  
ROI “S”: Mean time series of PROSAILH parameters retrieved from HyspIRI-161 images vs. the 
Baseline ROI.    Wet season and dry season retrievals are colored in blue and red color, respectively.  
Red vertical line in each plot indicates the timing  of Halemaumau vent opening   (2008.03.19).  
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Figure MD1: ROI “D1” Mean Time series of PROSAILH parameters vs. Baseline 
ROI  
ROI “D1”: Mean time series of PROSAILH parameters retrieved from HyspIRI-161 images vs. the 
Baseline ROI.    Wet season and dry season retrievals are colored in blue and red color, respectively.  
Red vertical line in each plot indicates the timing  of Halemaumau vent opening   (2008.03.19).  
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Table 1:  PROSAILH parameter information 

symbol/ 

acronym name units initial value range 

assumed 
a known 
constant 

N leaf structure parameter - 1.5 [1,  3] no 

Cab chlorophyll a+b content μg/cm2 30 [1e-8,   300] no 

Car carotenoids content μg/ cm2 8 [1e-8,   200] no 

Cbrown  brown pigments content - 0.05  [1e-8,   3.0]; no 

Cw equivalent water thickness cm or g/ cm2 0.01 [1e-8,   0.30] no 

Cm dry matter content g/ cm2 0.01  [1e-8,   0.40]; no 

ALA average leaf angle (elliptical LIDF) degrees 50  [0.1, 89.9] no 

LAI leaf area index m2/ m2 1 [1e-8 - 15] no 

q hot spot coefficient - 0.5 [0.02-2.0] no 

SkyL Ratio of diffused to total incident radiation - 0.23 - yes (*) 

sza Solar zenith angle degrees from image - yes (*) 

vza Viewing zenith angle degrees from image - yes (*) 

raa Relative azimuth angle degrees from image - yes (*) 

ρs Soil reflectance (Lambertian) - from image - yes 

(*) - after image normalization 
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Table 2:  What happens with vegetation properties retrieved by PROSAILH 
when soil brightness increases 

symbol name direction of change 
Cab chlorophyll a+b content decrease 
Car carotenoids content decrease 
Cbrown  brown pigments content decrease 
Cw equivalent water thickness decrease 
Cm dry matter content decrease 
ALA average leaf angle (elliptical LIDF) increase 
LAI leaf area index increase 
CWC canopy water content (EWT*LAI) increase 
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Table 3: Hyperion Sun-View Geometry and Empirical Between-Date 
Normalization 

Image # Date 

Sensor 
Look 
Angle 

Sun 
Elevation 
Angle 

Sun 
Azimuth 

Sun 
Azimuth 
Relative to 
Sensor  

Norm 
Factor, β  

1 '2005.01.17' 7.7 41.5 143.9 113.1 0.8477 
2 '2005.01.19' -17.4 39.9 140.5 -63.5 0.5438 
3 '2005.01.26' -5.3 41.9 140.1 -63.1 0.6626 
4 '2005.06.19' -5.4 64.2 76.2 0.8 0.4947 
5 '2005.08.15' -17.3 61.0 96.4 -19.4 0.4116 
6 '2005.08.22' -5.1 62.1 102.2 -25.2 0.5629 
7 '2005.11.26' 0.0 43.5 149.2 -162.2 0.8476 
8 '2005.12.27' -13.6 39.1 145.6 -68.6 0.5734 
9 '2006.02.06' -10.4 43.5 136.2 -59.2 0.6586 
10 '2006.06.07' -8.7 64.3 77.4 -0.4 0.5092 
11 '2006.08.03' -20.0 60.9 88.8 -11.8 0.3875 
12 '2006.12.08' -22.8 40.1 146.2 -69.2 0.5079 
13 '2007.01.20' 7.9 41.7 143.1 113.9 0.844 
14 '2007.07.06' -6.2 62.9 78.1 -1.1 0.4771 
15 '2007.12.01' -2.2 42.2 148.2 -71.2 0.7703 
16 '2008.06.07' -12.5 63.3 77.5 -0.5 0.4511 
17 '2008.06.30' -13.6 62.0 76.9 0.1 0.4274 
18 '2008.08.23' 9.8 63.0 103.8 153.2 0.803 
19 '2008.09.28' 23.3 59.4 132.9 124.1 0.9699 
20 '2008.12.06' 16.9 42.5 150.7 106.3 1.0367 
21 '2009.01.13' -15.5 39.2 141.4 -64.4 0.6163 
22 '2009.05.24' 8.4 66.1 81.8 175.2 0.5769 
23 '2009.12.03' -2.5 41.9 148.3 -71.3 0.7737 
24 '2009.12.16' 7.0 40.8 148.7 108.3 0.923 
25 '2010.01.03' 3.8 39.9 145.8 111.2 0.7693 
26 '2010.01.16' 12.8 41.3 144.1 112.9 1 
27 '2010.01.26' -11.6 41.0 138.7 -61.7 0.5163 
28 '2010.06.12' 13.8 66.0 76.4 -179.4 0.6728 
29 '2010.12.30' -18.8 38.3 144.0 -67.0 0.5208 
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Table 4:  Strength of evidence (in terms of two-sample t-test p-value) that the 
ratio to baseline ROI vegetation properties significantly decreased or 
increased after the Halemaumau eruption. 
 

Two-sample t-test  p-value (alternative 
hypothesis: "Ratio to Baseline 

DECREASED") 

 
ROI "C" ROI "S" ROI "D1" 

LAI 0.010141 0.000268 0.021371 
Cw 0.451162 0.803092 0.440887 
CWC 0.126032 0.257056 0.186301 
Cab 0.760949 0.935836 0.969659 
Car 0.027431 0.12341 0.669799 
Cbrown 0.994519 0.998582 0.945563 

Two-sample t-test  p-value (alternative 
hypothesis: "Ratio to Baseline 

INCREASED") 

 
ROI "C" ROI "S" ROI "D1" 

LAI 0.989859 0.999732 0.978629 
Cw 0.548838 0.196908 0.559113 
CWC 0.873968 0.742944 0.813699 
Cab 0.239051 0.064164 0.030341 
Car 0.972569 0.87659 0.330201 
Cbrown 0.005481 0.001418 0.054437 

 Strong Evidence 
Medium Evidence 

Weak Evidence 
 

 


	Summary
	1. Introduction
	2. Research Activities
	2.1.  Study area and HyspIRI-161 image sequence
	2.2.  Algorithm/software development for PROSAILH inversion over remote sensing images
	2.2.1. Computational aspects:  HyspIRI spectral resolution is sufficiently high to enable computationally economical numerical inversion modes.
	2.2.2. Choice of  soil spectrum

	2.3.  Data processing and compiling HyspIRI-161 image sequence and ancillary datasets
	2.3.1. Image co-registration across time
	2.3.2. Atmospheric Correction
	2.3.3. Cloud, plume, and shadow mapping
	2.3.4. Empirical radiometric normalization of reflectances to compensate for BRDF

	2.4.  Vegetation Change Analysis with HyspIRI-like images and PROSAILH.
	2.4.1. Vegetation-volcano relationship analysis
	2.4.2. What HyspIRI-161 + PROSAILH think has happened to vegetation near the volcano


	3. Conclusions and Recommendations
	Acknowledgements
	References
	Figures and Tables
	Figure A1: Spatial coverage of Hyperion datasets available for 2005-2010 in the Eastern part of the Island of Hawaii
	Figure A2: Temporal coverage of the HyspIRI-161 dataset
	Figure B: Example of ATCOR-corrected  HyspIRI-like spectra: Vegetation
	Figure C: Example of  Cloud, Plume, and Shadow classification images developed in this project
	Figure D: Specific absorption coefficient spectra used by PROSPECT-5
	Figure E1: Effect of running PROSAILH at the laboratory (1-nm) and HyspIRI (10 nm) resolution on Chl-a,b retrieval
	Figure E2: Effect of running PROSAILH at the sensor resolution, in case of MASTER data:  observed vs. modeled spectra
	Figure E3: Effect of running PROSAILH at the sensor resolution, in case of MASTER data
	Figure F1: Soil spectra: the actually used one and the scaled ones
	Figure F2: Cbrown retrievals under different brightness of soil spectrum
	Figure G1: Brightness variability across images of the HyspIRI-161 sequence
	Figure G2: Instability of PROSAILH inversion for images with substantially varying sun-view geometry, in the example of Average Leaf Angle (ALA)
	Figure G3: Sun-view geometries vs. empirical normalization coefficient β
	Figure H: ROIs
	Figure J1:  Leaves and Canopies of Metrosideros Polymorpha and Myrica Faya
	Figure K1:  LAI retrieval from PROSAILH for Metrosideros Polymorpha and Myrica Faya sites of Asner et al. 2006: note that the estimated LAI is generally higher for Myrica regions
	Figure K2:  Cw retrieval from PROSAILH for Metrosideros Polymorpha and Myrica Faya sites of Asner et al. 2006: note that the estimated Cw is generally higher for Myrica regions .
	Figure L1: High-resolution images of ROIs  (cf. Figure L2)
	Figure L2:  Zoomed image time series of the ratio to baseline ROI for selected vegetation properties during wet season before and after the eruption (note the apparent change in spatial pattern, consistent with vegetation degradation observable in Fig...
	Figure MC: ROI “C” Mean Time series of PROSAILH parameters vs. Baseline ROI
	Figure MS: ROI “S” Mean Time series of PROSAILH parameters vs. Baseline ROI
	Figure MD1: ROI “D1” Mean Time series of PROSAILH parameters vs. Baseline ROI
	Table 1:  PROSAILH parameter information
	Table 2:  What happens with vegetation properties retrieved by PROSAILH when soil brightness increases
	Table 3: Hyperion Sun-View Geometry and Empirical Between-Date Normalization
	Table 4:  Strength of evidence (in terms of two-sample t-test p-value) that the ratio to baseline ROI vegetation properties significantly decreased or increased after the Halemaumau eruption.


