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Executive Summary 
 

 The HyspIRI Aquatic Studies Group (HASG) has developed a conceptual list of 

data products for the HyspIRI mission to support aquatic remote sensing of coastal and 

inland waters. These data products were based on mission capabilities, characteristics, 

and expected performance. The topic of coastal and inland water remote sensing is very 

broad. Thus, this report focuses on aquatic data products to keep the scope of this 

document manageable. The HyspIRI mission requirements already include the global 

production of surface reflectance and temperature. Atmospheric correction and surface 

temperature algorithms, which are critical to aquatic remote sensing, are covered in other 

mission documents. Hence, these algorithms and their products were not evaluated in this 

report. In addition, terrestrial products (e.g., land use/land cover, dune vegetation, and 

beach replenishment) were not considered. It is recognized that coastal studies are 

inherently interdisciplinary across aquatic and terrestrial disciplines. However, products 

supporting the latter are expected to already be evaluated by other components of the 

mission. The coastal and inland water data products that were identified by the HASG, 

covered six major environmental and ecological areas for scientific research and 

applications: wetlands, shoreline processes, the water surface, the water column, 

bathymetry and benthic cover types. Accordingly, each candidate product was evaluated 

for feasibility based on the HyspIRI mission characteristics and whether it was unique 

and relevant to the HyspIRI science objectives. 

 

 For each of the six major environmental and ecological areas of aquatic data 

products, several key example data products were identified (Table ES.1). These were 

assigned priority ranking based on three major factors. The first factor was the 

uniqueness of the measurement to the HyspIRI mission characteristics and objectives. In 

certain cases, products could be identified as not being easily generated on global scales 

via any other orbiting remote sensing asset planned by the US government. The second 

factor was the urgency for such data products in the support of scientific research and 

application in the six major aquatic environmental and ecological areas. This involved 

assessing how well the data products would directly and immediately contribute to the 

HyspIRI science questions or were tied to objectives identified by the 2007 Decadal 

Survey. In addition, the importance or urgency to science research and applications was 

also considered, even if not clearly defined by the mission science questions or Decadal 

Survey. The third factor was the feasibility or ease of implementation of each data 

product, i.e., what are the chances that accurate results would be obtained? Combining 

these three criteria through a continued dialogue, a subjective priority was assigned to 

key candidate products and applications. Assessment of aquatic data products for the six 

major areas are discussed in detail in Section 2 of this report and synthesized in Section 

3. 

 

Two main challenges face the coastal and inland aquatic remote sensing 

community in developing the data products described in this report. First, community-

owned Level-2, -3, or -4 algorithms must be shown to generate products on synoptic 

scales using HyspIRI Level-1 or Level-2 surface reflectance or temperature data. Second, 

it must also be shown that these community-generated data products will be of sufficient 
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quality to achieve science objectives, especially those that are aligned with answering the 

mission science questions. To address these two challenges, recommendations are 

provided in the last section of this report. However, these recommendations are by no 

means exhaustive. A collaborative dialogue will need to be continued amongst algorithm 

developers, researchers in the field, mission engineering teams, and project and program 

management. The HASG can serve as a forum to facilitate this discussion throughout the 

algorithm development phase of the mission. Finally, remote sensing over coastal and 

inland waters present HyspIRI with unique, yet tractable, challenges. Thus, it is 

recommended that NASA support some preparatory algorithm development, including 

leveraging other efforts (e.g., the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) 

mission) and other resources when possible. 

 

To that end, it is recommended that HyspIRI community efforts be synergized 

with other efforts in the greater coastal and inland remote sensing community. A 

community-wide dialogue could be facilitated through the HASG by providing a forum 

for development efforts supporting other hyperspectral or coastal and inland water remote 

sensing endeavors. In addition, it is important that the HASG leadership inform the 

mission project and program management of community developments, interests, and 

recommendations. Finally, the HASG could facilitate a dialogue with the mission 

engineering team to develop a complete understanding of instrument characteristics, 

calibration, and project-owned Level-2 algorithm function and characteristics. It is 

expected that this exchange could be collaborative, but moderated by project 

management, as necessary. Further recommendations regarding this relationship are 

provided in Section 4 of this report. 
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Category Data Product Priority
       

1. Wetlands Wetland Delineation and Type 1 
Fraction of Vegetation Cover (sub-pixel) 2 
Fraction of Water Cover (sub-pixel) 2 
Fraction of Exposed Soil (sub-pixel) 2 
Sub-aerial Biomass 3 
Species Map 3 
Vegetation and Water Indices 3 
Evaporation Rates 3 
Soil Water Content 3 
Substrate Type 4 
Substrate Grain Size 4 
Substrate Bearing Strength 4 

      
2. Coastlines / Ice Margins Groundwater Discharge and Eco Response 2 

Ice Margin Phytoplankton Pigments 2 
Floods and Coastlines Maps (Episodic) 3 

      
3. Water Surface Features Water Surface Temperature* 1 

Floating Material Type Map 2 
Floating Material Density 2 
Total Mass 3 

      
4. Water Column Apparent Optical Properties   

   -Remote Sensing Reflectance (Rrs)* 1 
   -Diffuse Attenuation Coefficient (Kd) 3 
Inherent Optical Properties   
   -Absorption (a) 3 
   -Particle Backscatter (bp) 3 
Fluorescence Line Height 2 
Total Suspended Matter (TSM) 3 
Total Suspended Sediment (TSS) 3 
CDOM 3 
Chlorophyll a Concentration 3 
Other Pigment Concentrations 3 
Phytoplankton Functional Type 3 

      
5. Bathymetry Depth 1 
      
6. Benthos Benthic Cover Type (Coral, Algae, SAV, etc.) 1 
  Species Maps 3 
  * Project Supported Data Products   

Table ES. 1 - Products and Prioritization. Summary of the key data products or 

applications for sections 2.1 – 2.6 of this report. For each data product or application, a 

priority is assigned, from 1 to 4 (1 being the highest priority), which is based on the 

uniqueness to the HyspIRI mission, the urgency and compelling nature, and the 

feasibility of each proposed product. 
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1. Introduction 

1.1 Background 
 

Coastal ecosystems are among the most productive ecosystems in the world, 

playing a major role in water, carbon, nitrogen and phosphorous cycles between land and 

sea. Furthermore, coastal regions are home to about two thirds of the world’s population 

(Cracknell, 1999). In the USA, coastal counties alone contribute nearly 40% of the 

country’s Gross Domestic Production (Kildow, et al., 2009). The social and economic 

well-being of human communities living in these regions depends significantly on the 

health of the surrounding coastal ecosystem. Studies of coastal and inland aquatic 

ecosystems and water quality are critical to understanding and protecting these valuable 

resources. These marginal regions between land and sea support valuable ecotones that 

are highly vulnerable to shifts in the environment, whether from climate change and its 

consequences (e.g., sea level rise), human activities (e.g., eutrophication or changes to 

existing watershed hydrology), or natural disturbances (e.g., storms or tsunamis). As 

these drivers of change can occur on large scales or even globally, spaceborne remote 

sensing is a key tool for studying these environments. 

 

As coastal aquatic ecosystems exhibit extreme variations in areal extent, spatial 

dynamics, and bio-optical complexity, studying and monitoring their biophysical features 

and processes require imagery with high spatial and spectral resolutions (Klemas, 2013). 

Lee et al., (2007) have suggested a minimum requirement of 17 spectral bands (see Table 

2 in their paper) located between 400 and 800 nm to observe subtle changes in the remote 

sensing reflectance of water alone, given the great variability in the influence of turbidity, 

bottom reflectance, and complex atmospheric conditions. Adding interdisciplinary studies 

of emergent communities, shorelines, floating substances and benthic communities 

increases the required number and range of bands substantially. The National Research 

Council report titled “Earth Science and Applications from Space: National Imperatives 

for the Next Decade and Beyond” (2007), also known as the “Decadal Survey,” defined 

the need for a global mission for studying coastal aquatic ecosystems using a spaceborne 

hyperspectral sensor. Recent advances in sensor technology have enabled the 

development and launch of spaceborne hyperspectral sensors, which has opened a new 

era in the remote sensing of inland, estuarine, and coastal environments. Remote sensing 

retrievals can benefit from more spectral information, making it possible to acquire more 

information over a greater range of conditions and reduce the effect of noise in the data 

by choosing different, but correlated, regions of the spectrum, or using information from 

a combination of bands with a known relationship. Hyperspectral sensors open the 

possibility of the retrieval of a large number of aquatic biophysical products, such as 

phytoplankton concentration, concentration of dissolved organic matter, diffuse 

attenuation coefficient, backscattering coefficient, suspended sediment concentration, or 

phytoplankton community structure. In 2000, the National Aeronautics and Space 

Administration (NASA) launched the first spaceborne hyperspectral sensor, Hyperion, 

with 220 contiguous spectral bands. In 2001, the European Space Agency launched the 
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Compact High Resolution Imaging Spectrometer (CHRIS), a programmable sensor with 

up to 63 bands. The Naval Research Laboratory built and launched the Hyperspectral 

Imager for the Coastal Ocean (HICO) in 2009. Except for HICO, none of the spaceborne 

hyperspectral sensors launched so far were designed to have a Signal-to-Noise Ratio 

(SNR) that is optimized for the optically complex coastal aquatic environment. HICO is a 

low cost, prototype sensor that was developed as a demonstration mission with on-

demand image acquisition, but was not designed to be capable of providing global 

coverage on a regular basis. 

 

The Decadal Survey has recommended the development of the Hyperspectral 

Infrared Imager (HyspIRI) mission. Although originally developed as a terrestrial 

ecosystem mission, HyspIRI is well suited to produce global maps of coastal ecosystems, 

which can improve our understanding of how coastal processes and ecologies are 

distributed and structured, and how they function. To that end, this document reports 

input from the HyspIRI Aquatic Study Group (HASG), which was chartered to solicit and 

compile input from the hyperspectral coastal and inland remote sensing community. The 

resulting report explores potential data products to be generated by the community using 

measurements taken from the HyspIRI mission. The focus is primarily on coastal 

systems, though inland water studies are equally important. The potential application of 

hyperspectral remote sensing of inland waters is well covered in an Australian 

government report (Dekker and Hestir, 2012). 

1.2 HyspIRI Mission Concept 
 

As shown in Table 1.1, the current design plan for HyspIRI includes a 

hyperspectral Visible Short Wave Infrared (VSWIR) imaging spectrometer with 213 

spectral channels between 0.38 and 2.5 μm at 0.01 μm spectral resolution, and a 

multispectral Thermal Infrared (TIR) imager with eight spectral channels (one centered at 

4 μm and seven located between 7.5 and 12 μm). Both instruments will have a spatial 

resolution of 60 m at nadir. The spacecraft is planned to fly in a polar orbit, crossing the 

equator at 11:00 a.m. local time in its ascending node. The equatorial revisit times will be 

19 days and five days for the VSWIR and TIR instruments, respectively (Roberts et al., 

2012). The instrument will have a 14-bit radiometric resolution, 2% polarization 

sensitivity, and a 4° westward tilt to reduce specular solar reflectance. 

 

Figure 1.1 compares the spectral resolution and range of HyspIRI’s VSWIR 

spectrometer to those of traditional spaceborne ocean color instruments used for open-

ocean remote sensing. With more than 30 bands in the spectral range 400–800 nm, 

HyspIRI would be capable of capturing subtle changes in the reflectance due to bio-

optical variations in the water, and provide new information that cannot be obtained from 

current multispectral sensors. For example, the spectral bands between 710 and 750 nm 

will provide critical information necessary for accurately retrieving high concentrations 

of chlorophyll-a (chl-a) (Moses et al., 2009). The high spectral resolution of HyspIRI 

would also result in redundancy of information due to a strong correlation between some 

bands, which would improve retrievals of water column properties when the 

measurements contain errors (IOCCG, 1998). Using the high spectral resolution of 

HyspIRI, we can expect to improve the accuracy of existing multispectral products (e.g., 
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chl-a concentration, inherent optical properties, etc.), and also derive new products that 

could not be retrieved using multispectral sensors (e.g., pigment composition). 

 

Table 1.1 Key characteristics of the HyspIRI mission. 

 

 VSWIR TIR 

Spectral Range 380 – 2500 nm 3.98, 7.35, 8.28, 9.07, 10.53, 11.33, and 

12.05 μm 

Spectral Bandwidth 10 nm, uniform over 

range 

0.084, 0.32, 0.34, 0.35, 0.36, 0.54,  

0.54, and 0.52 μm 

Radiometric 

Resolution 

14-bit 14-bit 

Angular Field of 

View 

12° 51° 

Altitude 700 km 700 km 

Swath Width 145 km 600 km 

Cross Track 

Samples 

>2400 10,000 

Spatial Resolution 60 m (Depth < 50m) 

1 km (Depth > 50m) 

60 m (Depth < 50m) 

1 km (Depth > 50m) 

Spatial Range >145 km 600 km 

Samples 2400 10,000 

Orbit Polar Ascending Polar Ascending 

Equatorial Crossing 11:00 a.m. 11:00 a.m. 

Altitude 700 km  

Equatorial Revisit 19 days 5 days 

Rapid Response 3 days 3 days 

Tilt 4° West 4° West 
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Observations of the visible portion of the water-leaving radiance from a 

spaceborne platform started at the end of the 1970s with the launch of the Coastal Zone 

Color Scanner (CZCS) on Nimbus-7. CZCS had a spatial resolution of 825 m at nadir and 

five channels spanning 443–750 nm. The sensor was primarily used to map the biomass 

of the ocean, which was achieved with great success (Yentsch, 2013). Following CZCS, a 

number of multispectral sensors have been launched by various space agencies, with a 

number of bands in the visible and infrared regions, such as the Ocean Color Monitor 

Figure 1.1 (a) Spectral coverage of HyspIRI and standard ocean color sensors in the 

VSWIR region; (b) Absorption coefficients of phytoplankton (small and large cells),  

non-algal particles, yellow substances and the spectral coverage of the aforementioned 

sensors in the visible region. All bands are shown for the MODerate Imaging 

Spectroradiometer (MODIS) and MERIS (MEdium Resolution Imaging Spectro-

meter), some of which overlap. However, only the moderate resolution bands are 

shown for VIIRS (Visible Infrared Imaging Spectrometer). 
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(OCM), with eight bands, and the Global Imager (GLI), with 36 bands. The spatial 

resolution at nadir of such multispectral ocean color sensors has ranged from 250 m (e.g., 

the MODerate spectral resolution Imaging Spectroradiometer (MODIS)) to a few 

kilometers (e.g., the POLarization and Directionality of the Earth’s Reflectances 

(POLDER) instrument, with 6 km spatial resolution). 

 

The spectral range of HyspIRI includes wavelengths between 1 and 2.5 μm, 

which are important for atmospheric correction and can be used to significantly improve 

the retrieval of surface reflectance in coastal and inland waters. The projected SNR of 

HyspIRI is better than that of Hyperion, comparable to that of HICO, and is considered 

reasonably adequate for accurately retrieving hyperspectral reflectance from water 

surface for typical coastal or inland water conditions. Even with a temporal revisit cycle 

as long as 19 days, the regular global coverage offered by HyspIRI at high spatial and 

spectral resolutions will support studies of global coastal waters that require detailed 

information about the spatial extent and distribution of surface, sub-surface, or bottom 

features. This report also discusses the retrieval of various optical and bio-optical 

properties routinely measured by multispectral ocean color sensors, and explains the 

improvements that could be achieved through hyperspectral measurements from sensors 

such as HyspIRI. 

1.3 Identifying Candidate Remote Sensing Products 
 

In order to develop this report, community input was compiled from the literature 

and through discussions of the HASG. This input was subsequently documented in this 

report by a smaller team of writers, and the resulting manuscript was then reviewed by 

the HASG. The object was to first identify all manners of aquatic hyperspectral data 

products (including some details or examples of their use) that can be obtained through 

the HyspIRI mission and are necessary to address the HyspIRI aquatic science questions 

(see Table 1.2). The team then considered the requirements of algorithms that would be 

supported by HyspIRI’s capabilities.  This led to a more realistic identification of the 

challenges associated with each potential product.  To aid NASA project and program 

management, these products were then prioritized based on their uniqueness to the 

mission characteristics, their compelling nature or relevance to the mission science 

objectives and their overall feasibility. 

 

Most of the focus was placed on hyperspectral applications of HyspIRI VISWIR 

spectroscopy, particularly including classification algorithms and spectral component 

decomposition. In addition, some algorithms that rely on only a few bands were also 

considered. In some cases, this was merely to explore how hyperspectral data products 

would improve our understanding of coastal and inland water processes. Some multi-

band algorithms were included with the supposition that contemporaneous, co-registered 

multi-band products would enhance the application of data products based on 

hyperspectral data. In addition, the rich spectral data offered by the spectrometer facilitate 

the use of adaptable multispectral algorithms, and support a greater variety of potential 

multi-band algorithms, which addresses the great diversity of spectral signatures found 

along the water/land interface. The use of the HyspIRI thermal bands were likewise 

considered. 
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Table 1.2. HyspIRI Science Questions (copied from http://hyspiri.jpl.nasa.gov/science). 

The VQ questions are primarily related to VSWIR data, the TQ questions are related to 

TIR data, and the CQ questions are related to VSWIR-TIR combined data products. 

 

 

No. Question 

VQ1. 
What is the global spatial pattern of ecosystem and diversity distributions and 

how do ecosystems differ in their composition or biodiversity? 

VQ2. 

What are the seasonal expressions and cycles for terrestrial and aquatic 

ecosystems, functional groups, and diagnostic species? How are these being 

altered by changes in climate, land use, and disturbance? 

VQ3. 

How are the biogeochemical cycles that sustain life on Earth being 

altered/disrupted by natural and human-induced environmental change? How do 

these changes affect the composition and health of ecosystems and what are the 

feedbacks with other components of the Earth system? 

VQ4. 
How are disturbance regimes changing and how do these changes affect the 

ecosystem processes that support life on Earth? 

VQ5. 
How do changes in ecosystem composition and function affect human health, 

resource use, and resource management? 

VQ6. 
What are the land surface soil/rock, snow/ice and shallow-water benthic 

compositions? 

TQ1. 
How can we help predict and mitigate earthquake and volcanic hazards through 

detection of transient thermal phenomena? 

TQ2. 
What is the impact of global biomass burning on the terrestrial biosphere and 

atmosphere, and how is this impact changing over time? 

TQ3. 

How is consumptive use of global freshwater supplies responding to changes in 

climate and demand, and what are the implications for sustainable management of 

water resources? 

TQ4. 
How does urbanization affect the local, regional and global environment? Can we 

characterize this effect to help mitigate its impact on human health and welfare? 

TQ5. 
What is the composition and temperature of the exposed surface of the Earth? 

How do these factors change over time and affect land use and habitability? 

CQ1. 
How do inland, coastal, and open ocean aquatic ecosystems change due to local 

and regional thermal climate, land-use change, and other factors? 

CQ2. How are fires and vegetation composition coupled? 

CQ3. 

Do volcanoes signal impending eruptions through changes in the temperature of 

the ground, rates of gas and aerosol emission, temperature and composition of 

crater lakes, or health and extent of vegetation cover? 

CQ4. 

How do species, functional type, and biodiversity composition within ecosystems 

influence the energy, water and biogeochemical cycles under varying climatic 

conditions? 

CQ5. 
What is the composition of exposed terrestrial surface of the Earth and how does 

it respond to anthropogenic and non-anthropogenic drivers? 

CQ6. 

How do patterns of human environmental and infectious diseases respond to 

leading environmental changes, particularly to urban growth and change and the 

associated impacts of urbanization? 

http://hyspiri.jpl.nasa.gov/science


 16 

2. Survey of Hyperspectral Aquatic Data Products 
 

2.1 Wetland Cover Classification and Mapping 
 

 Wetlands are highly productive systems that act as critical habitats for a wide 

variety of life and provide numerous ecosystem services. They are at risk globally due to 

a range of factors including agricultural and urban expansion, eutrophication, pollution, 

and sea level rise. Mapping wetlands continues to be a national priority in the U.S. Global 

efforts to monitor wetlands are increasing. This section provides a brief review of past 

and present success at mapping wetland type and function (e.g., saltwater, brackish water, 

freshwater, wooded, scrub-shrub, mangroves, and marshes) via remote sensing across 

spatial and spectral scales, and highlights areas in which the hyperspectral capability, 

spatial resolution, swath-width and signal-to-noise ratio of HyspIRI meet most of the 

requirements for mapping wetland vegetation type and function at regional to global 

scales. 

 

 Wetlands and estuaries are highly productive and act as critical habitats for a wide 

variety of plants, fish, shellfish, and other wildlife. Wetlands also provide flood 

protection, protection from storm and wave damage, water quality improvement through 

filtering of agricultural and industrial waste, and recharge of aquifers (Miller and Fujii 

2010, Morris et al., 2002; Odum, 1993). Wetlands have been exposed to a wide range of 

stress-inducing alterations, including dredge and fill operations, hydrologic 

modifications, pollutant run-off, eutrophication, impoundments, invasion by other plant 

species, and fragmentation by roads and ditches. There is also considerable concern 

regarding the impact of climate change on coastal wetlands, especially due to relative sea 

level rise, increasing temperatures and changes in precipitation (Church and White, 2006; 

McInnes et al., 2003). At the same time, coastal wetlands (along with mangroves and 

seagrasses) represent a significant carbon pool. The carbon stocks and future cumulative 

carbon storage in these wetlands are referred to as “Blue Carbon,” and play an important 

role in managing atmospheric carbon (Pendleton et al. 2012). To plan for wetland 

protection and responsible development, there is a need to map and monitor changes in 

saltwater, freshwater and wooded wetlands at local, regional, and global scales. Much has 

been done since the early 1980s to map wetlands with remote sensing. Early work with 

multispectral imagery has been augmented with recent use of hyperspectral imagery. 

Dynamic global vegetation models offer explicit representations of the land surface 

through time and have been used to research large-scale hydrologic responses to climate 

change (Murray et al., 2012). 

 

 Knowledge of latent and sensible heat fluxes and soil moisture is important to 

monitoring plant growth and productivity, land degradation and desertification, numerical 

modeling and prediction of atmospheric and hydrological cycles, and improving the 

accuracy of weather forecast models. The combined use of satellite data from optical and 

thermal infrared radiometers has shown promise for the retrieval of latent and sensible 
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heat fluxes, as well as soil surface moisture variations (Petropoulos et al., 2009; Sandholt 

et al., 2002). 

Science Questions Addressed 
 The wetland data products obtained from the HyspIRI mission will help address 

the following science questions (from Table 1.2): 

VQ1. What is the global spatial pattern of ecosystem and diversity distributions and how 

do ecosystems differ in their composition or biodiversity? 

VQ2. What are the seasonal expressions and cycles for terrestrial and aquatic ecosystems, 

functional groups, and diagnostic species? How are these being altered by changes in 

climate, land use, and disturbance? 

VQ3. How are the biogeochemical cycles that sustain life on Earth being 

altered/disrupted by natural and human-induced environmental change? How do these 

changes affect the composition and health of ecosystems and what are the feedbacks with 

other components of the Earth system? 

CQ1. How do inland, coastal, and open ocean aquatic ecosystems change due to local and 

regional thermal climate, land-use change, and other factors? 

CQ4. How do species, functional type, and biodiversity composition within ecosystems 

influence the energy, water and biogeochemical cycles under varying climatic 

conditions? 

CQ6. How do patterns of human environmental and infectious diseases respond to 

leading environmental changes, particularly to urban growth and change and the 

associated impacts of urbanization? 

Candidate Products or Applications 

Saltwater and Brackish Marsh Vegetation 
 Salt marshes are widely distributed along many of the world’s coasts and are 

often dominated by specifically adapted species of grasses, sedges, and rushes that tend 

to form monospecific canopies across regions with a high salinity gradient. For instance, 

smooth cordgrass (Spartina alterniflora) tends to dominate the eastern North American 

seaboard and the Gulf of Mexico. The relative purity and size of some salt marshes and 

aquatic nature of the substrate make it possible to map them from satellites. Multispectral 

medium resolution satellite imagers, such as Landsat TM and Satellite Pour l’Observation 

de la Terre (SPOT), and high resolution satellites, such as IKONOS® and QuickBird, 

have been effective primarily for mapping wetland location and extent (Gilmore et al., 

2010; Jensen, 1998; Klemas, 2011; Lunetta and Balogh, 1999; Lyon and McCarthy, 

1995; Wang, 2010), as well as vegetation pattern and condition (Ramsey and 

Rangoonwala, 2005; Kelly et al., 2011; Tuxen et al., 2008; Tuxen et al., 2011) at local or 

regional scales. 

 

Efforts have been made to assess and monitor coastal marshes in order to improve 

our understanding of their essential services and to aid in their management (Dahl, 2011; 

Kelly and Tuxen, 2009; UNEP, 2006). Part of the process of managing degradation of 
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coastal marsh services includes identifying changes in marsh systems that would affect 

these services (Barbier, et al., 2011). Studies of changes in ecological function and 

response are often limited to a small number of plots, and scientists must extrapolate 

findings to regional scales. Although monitoring widespread changes to these landscapes 

could assist researchers and policymakers in assessing and monitoring marsh 

deterioration or restoration, limited accessibility makes large-scale, in situ, evaluation 

challenging (Seher and Tueller, 1973). Remote sensing techniques offer an efficient 

approach to quantify changes in marsh vegetation (Klemas, 2013a; 2013b). The utility of 

remote sensing techniques has been explored for measuring quantities over large regions 

of wetlands, such as species and cover type (Artigas and Yang, 2005; Jensen, et al., 1986; 

Jollineau and Howarth, 2008; Judd, et al., 2007; Schmidt and Skidmore, 2003; Silvestri 

and S., 2003; Underwood, et al., 2006; Zomer, et al., 2009), canopy density or Leaf Area 

Index (LAI) (Sone, et al., 2009; Wang, et al., 2007; Xavier and Vettorazzi, 2004; Xiao, et 

al., 2002), biomass (Klemas, 2013a; Mishra et al. 2012; Mutanga et al. 2012; Byrd et al. 

2014), or quantities related to plant production and stress (Klemas, 2001; Mendelssohn, 

et al., 2001; Ramsey and Rangoonwala, 2006; Tilley, 2003; Vaesen, et al., 2001; Zhao, et 

al., 2009). However, the optical properties of an inundated canopy can present new 

challenges for some of these techniques (Turpie, 2012; Turpie, 2013). Most attempts at 

mapping these vegetation biophysical characteristics have utilized multispectral sensors, 

largely due to ease of availability. Recent analysis of full spectrum field spectrometer 

data indicated that hyperspectral first derivative reflectance spectra can provide improved 

predictions of wetland vegetation biomass over simulated broadband spectra under low 

inundation conditions (Byrd et al. 2014). Further, biomass studies in forest and cropland 

have demonstrated the greater predictive capacity of hyperspectral imagery compared to 

multispectral sensors (Mariotto, et al. 2013, Thenkabail, et al. 2004), suggesting that 

hyperspectral data will improve biophysical models in wetlands as well. 

 

 The value of satellite imagery is illustrated in Figure 2.1.1, which shows an image 

of the Texas coast captured by the MODIS sensor on NASA’s Terra satellite 13 days 

after Hurricane Ike made landfall on September 13, 2008. The storm’s surge covered 

hundreds of kilometers of the Gulf Coast because Ike was a large storm, with tropical-

storm-strength winds stretching more than 400 km from the center of the storm. Most of 

the shoreline in this region is coastal wetland. One can clearly distinguish the brown 

areas in the image, which are the result of the massive storm surge that Ike had pushed far 

inland over Texas and Louisiana, causing a major marsh dieback. The salty water burned 

the plants, leaving them wilted and brown. The brown line corresponds with the location 

and extent of the wetlands. North of the brown line, the vegetation gradually transitions 

to pale green farmland and dark green natural vegetation untouched by the storm’s surge. 

The powerful tug of water returning to the Gulf also stripped marsh vegetation and soil 

off the land. Therefore, some of the brown seen in the wetlands may be deposited 

sediment. Plumes of brown water are visible as sediment-laden water drains from rivers 

and the coast in general. The muddy water slowly diffuses, turning pale green, green, and 

finally blue as it blends with clearer Gulf water (NASA/GSFC, 2010; Ramsey and 

Rangoonwala, 2005). 
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 Detailed mapping of species composition, dynamics, and plant vigor in complex 

salt marshes will require additional spectral data beyond what is found in multispectral 

imagery alone (Kelly and Tuxen, 2009). For example, the Airborne Visible and Infrared 

Imaging Spectrometer (AVIRIS) has been successfully used to map estuarine wetlands in 

the San Francisco Bay Area, California, USA (Rosso et al., 2005; Li et al., 2005), and 

Everglades National Park, Florida, USA (Hirano, et al., 2003), as well as other study 

areas. These early proof-of-concept studies using airborne hyperspectral imagers strongly 

suggest significant benefit from the use of data generated by HyspIRI. 

Freshwater Marshes 
 Freshwater marshes are relatively patchy and floristically diverse, and have a 

more mixed vegetative cover, producing a more complex, composite spectral signature 

than most saltwater marshes. These systems have also been disproportionately altered due 

to agricultural and urban expansion. Therefore, for local studies, they often need to be 

observed at high spatial resolution. A cost-effective method is to cover large areas, such 

as the Amazon Basin system, with medium resolution (30-250 m) imagers, and focus on 

critical or rapidly changing sites using the high resolution sensors (Arai et al., 2011). 

Hyperion and MERIS data have been used to classify Amazon water types (Lobo et al., 

2012). 

 

Figure 2.1.1 – The MODIS Spectroradiometer on NASA’s Terra satellite captured this 

image with a spatial resolution of 250 m 13 days after Hurricane Ike came ashore. The 

brown areas in the image are the result of a massive storm surge that Ike pushed far inland 

over Texas and Louisiana, causing a major marsh dieback. Credits: NASA/GSFC. 
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 The evaporation flux from freshwater wetlands has been estimated using thermal 

infrared sensing data and parameterization of the surface energy balance (Jackson, 2005; 

Mohamed, 2004). For instance, in the upper Nile Sudd wetlands of Sudan, the spatially 

averaged evaporation over three years was found to vary between 1460 and 1935 mm/yr. 

This is substantially less than open water evaporation, and the wetland appears to be 70% 

larger than what was previously assumed. This new set of spatially distributed 

evaporation parameters from thermal infrared (IR) remote sensing forms an important 

dataset for calibrating a regional climate model enclosing the Nile Basin (Chen et al., 

2002; Moffett, 2010; Mohamed et al., 2004). 

 

 The hydro-meteorological data for many of the world’s freshwater marshes is still 

quite inadequate. The areal size of these marshes, the evaporation rates, and their 

influence on the micro and meso climate are still unresolved questions of their hydrology. 

The combination of HyspIRI’s thermal infrared radiometer and imaging spectrometer 

will be effective for observing these hydrologic conditions of wetlands, including water 

levels and other hydro-meteorological properties. 

Wooded and Scrub-Shrub Wetlands 
 Forested and scrub-shrub wetlands, characterized as woody communities, are 

regularly inundated and saturated during the growing season. Wooded wetlands often 

spectrally resemble wooded uplands and are therefore difficult to distinguish from 

wooded upland areas, especially in drier conditions. For this reason, wooded wetlands are 

often less accurately mapped than emergent wetlands, even with hyperspectral imagery 

(e.g. Hirano et al., 2003). More success has been reported when satellite images of 

wetlands at their highest water levels are analyzed (Ozesmi and Bauer, 2002), or by 

making use of multi-temporal imagery from Landsat. For example, Townsend and Walsh 

(2001) used Landsat Thematic Mapper (TM) images from different seasons (March–

April, May–June, July–August) throughout a single year to exploit the phenological 

variability in forest wetlands in North Carolina, USA for mapping ecologically important 

vegetation types within the floodplain (Townsend and Walsh, 2001). Satellite imaging 

systems, such as the Advanced Very High Resolution Radiometer (AVHRR), Landsat 

TM, and MODIS, have been used to monitor deforestation and droughts of forest 

canopies of rain forests, including the Amazon (Anderson et al., 2010). 

Mangroves  
 Mangroves help reduce the erosional impact of storms, serve as breeding and 

feeding grounds for juvenile fish and shellfish, trap silt that could smother offshore coral 

reefs, and cleanse water by the uptake of nutrients and pollutants. Mangroves, which once 

occupied 75% of tropical and subtropical coastlines, are now seriously threatened by 

coastal development and climate change, including sea level rise. In many countries, 

mangrove swamps are being cut to provide firewood or building material, and are being 

destroyed by development of shrimp ponds (Alongi, 2002; Pinet, 2009; Wang and Sousa, 

2009). 

 

 Rapid losses of mangroves make it crucial to inventory and monitor the remaining 

mangroves to protect them from harmful development (Blasco, Aizpuru and Gers, 2001; 

Guanawardena and Rowan, 2005; Terchunian et al., 1986). Mapping and quantifying the 
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structure and biomass of mangrove ecosystems on a large scale is also important for 

studies of carbon storage, biodiversity, forest quality, and habitat suitability. Remote 

sensing has had a crucial role in monitoring mangroves, but the majority of applications 

have been limited to mapping areal extent and patterns of change.  

 

 Mangrove forests are patchy and have gaps in the canopy that expose moist soil or 

water. Therefore, high spatial resolution is required for mapping them in detail. Large 

scale mangrove mapping has been performed in the past using medium-resolution 

satellites such as Landsat-TM and SPOT (Gao, 1998; Kovacs, Wang and Blanco-Correa, 

2001; Saito et al., 2003). SPOT multispectral data were shown to be suitable for mapping 

dense mangroves. On the other hand, sparse mangroves were less accurately mapped, due 

to the spectral interference of their mudflat background (Gao, 1998). 

 

 Although there have been few studies using satellite-based hyperspectral remote 

sensing to detect and map mangrove species, laboratory experiments have shown that 

discrimination among multiple species is possible (Heumann, 2011; Vaiphasa et al., 

2005). Satellite-borne hyperspectral imagers, such as Hyperion, can detect fine 

differences in spectral reflectance. Similarly, HyspIRI may be able to map the spatial 

extent of mangroves and provide species discrimination on a global scale (Blasco, 

Aizpuru, and Din Ndango, 2005; Heumann, 2011). One of the challenges with species 

discrimination using hyperspectral sensors is that the gaps in the canopy expose the 

background moist soil or water, which “contaminates” the pure spectral reflectance 

signatures of the mangroves, unless the canopy is very dense. 

Marsh Hydrology and Hydro-meteorology 
 Knowledge of latent and sensible heat fluxes, as well as soil water content, is 

important for many environmental applications, including monitoring plant water 

requirements, plant growth, irrigation, land degradation, and desertification. Such data 

are also significant in the numerical modeling and prediction of atmospheric and 

hydrologic cycles, and for improving the accuracy of weather forecast models. The 

combined use of satellite data from optical and thermal infrared radiometers has shown 

promise for the retrieval of latent and sensible heat fluxes and soil surface moisture 

variations within the top 5 cm of the soil depth (Ghilain et al., 2011; Marshall et al., 

2013; Petropoulos et al., 2009). 

 

 Evapotranspiration is an important variable in water and energy balances of the 

earth’s surface. Understanding the distribution of evapotranspiration is a key factor in 

hydrology, climatology, agronomy, and ecological studies. On a global scale, about 64% 

of precipitation on the continents is evapotranspired. Of this amount, about 97% is 

evapotranspired from land surfaces and 3% evaporated from open water (Rivas and 

Caselles, 2004). In some zones of the world, about 90% of the precipitation can be 

evapotranspired (Varni et al., 1999). Thus, most of the water from the hydrologic system 

is transpired and evaporated, showing the importance evapotranspiration. 

 

 Spatial patterns of evapotranspiration in marshes can now be calculated using 

satellite data with a minimum of ground meteorological data (Meijerink, 2002). Rivas 

and Caselles (2004) have shown that the evapotranspiration of vegetation in a large river 
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basin can be estimated by combining the surface temperature, as obtained from satellite 

images, with conventional weather information. Carlson (2007) prepared an overview of 

the Triangle Method for estimating surface evapotranspiration and soil moisture from 

satellite imagery. A review of methods using remotely sensed surface temperature data 

for estimating land surface evaporation is provided by Kalma et al. (2008). 

 

 Continuous reduction of water levels and man-made and natural modifications of 

wetland hydrology are causing wetland stress and losses in many parts of the world. 

These hydrologic changes influence vegetation species composition, distribution, and 

condition. In the worst case, this can lead to a drying out of the whole wetland (Chopra et 

al., 2001; Xin, 2004). The hydrological conditions of emergent wetland vegetation have 

been explored with the help of remotely sensed biophysical data, such as surface 

temperature and vegetation indices (NDVI). Using a digital elevation model and 

regression models, a relation between surface temperature and water stress has been 

established. Results show that surface temperature and NDVI can be used for a better 

understanding of hydrological conditions of wetlands (Banks et al., 1996; Bendjoudi et 

al., 2002; Petropoulos et al., 2009). Daily and 8-day composite products from MODIS 

have been used effectively to map floodplain and wetland inundation extent 

corresponding to peak flows of significant flood events (Chen et al., 2013). In 

comparison, HyspIRI’s higher spatial resolution should provide even more accurate 

information. 

 

 Satellite data have been used to improve rainfall mapping and to monitor 

relationships between rainfall and vegetation responses. Vegetation and inundation 

dynamics and aspects of water quality of wetlands have been monitored in many parts of 

the tropics and elsewhere by using multispectral, thermal and radar imagery (Meijerink, 

2002). To study the dynamics of regional vegetation responses in southern Africa to the 

dry El Nino years and intervening wetter years, Kogan (1989) used a Vegetation and 

Temperature condition index (VT) based on NDVI values after radiometric correction 

and the brightness temperature of the surface based on the AVHRR thermal channel. 

Effects of transpiration of healthy vegetation are included by the temperature component 

of the index. Kogan (1989) found that it took 5 – 6 weeks for the VT index to decrease to 

a level that indicates severe stress (VT = 10 – 20), whereas with adequate moisture, the 

index is around 60. The numerical value of VT can be used for multi-temporal studies 

and for comparing values from the VSWIR and TIR sensors of HyspIRI in different parts 

of the world. 

 

 Natural vegetation patterns, as observed in satellite images, can also be related to 

groundwater occurrences and groundwater flow systems (Meijerink, 2002). Locating 

groundwater discharge zones in surface water bodies can provide information about the 

groundwater flow system in wetlands and about the potential transport of contaminants. 

This information can aid in the design and emplacement of groundwater monitoring 

networks and determining remediation techniques. Knowing the areal extent of 

groundwater discharge to surface water can also be useful for selecting sampling sites 

and for estimating the environmental effects of contaminant migration. Thermal infrared 

imaging is an effective method for assessing large areas and getting information about 
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specific locations of groundwater discharge because the groundwater usually has a 

different temperature than the background surface water (Byers and Chmura, 2013; Xin, 

2004). Simulated flooding patterns obtained from coupled surface water-groundwater 

models have been compared to patterns derived from satellite multispectral, thermal 

infrared and radar data that provided such model inputs as topography, aquifer thickness, 

channel positions, evapotranspiration and precipitation (Milzow et al., 2009).  

Sand and Mudflats 
 In desert regions, some studies have shown that grain size information can be 

obtained from hyperspectral imagery (Okin and Painter, 2004; Ghrephat et al., 2007). 

Hyperspectral imagery has been used to delineate coastal surface properties such as 

composition, moisture, and grain size. These are critical parameters for determining the 

substrate bearing strength (Bachmann et al., 2010). More recent studies have shown that 

sand density variations are observable in hyperspectral imagery (Bachmann et al., 2012), 

however, the exact relationship depends strongly on the sand constituent mixtures found 

in specific coast types (Bachmann et al., 2013). Although hyperspectral sensors only see 

the surface layers, statistics can be derived that relate the surface properties to the likely 

bearing strength of soils, making it possible to produce potential bearing strength maps 

on large scales. Initial validations have been performed relating airborne hyperspectral 

data to in situ spectral and geotechnical measurements through a spectral-geotechnical 

look-up table (Bachmann et al., 2010). 

 

 The most common methods for remotely sensing soil moisture are based on 

microwave radiometry. Approximate estimates of soil moisture have also been derived 

from satellite thermal infrared data. For instance, Shih and Jordan (1993) used Landsat 

TM band 6 thermal infrared imagery to monitor soil moisture conditions in southwestern 

Florida. The theoretical method of using daily temperature datasets to estimate root zone 

soil moisture was tested with field data. Results indicated that the percentage gravimetric 

soil moisture content in the 0-24 cm depth was inversely related to the soil surface 

temperature. TM band 6 images were overlaid in a Geographical Information System 

(GIS) onto four principal land-use categories (agricultural/irrigated, urban/clearings, 

forest/wetlands, and water), and used to assess four qualitative soil moisture conditions 

(water/very wet, wet, moist, and dry) within each land-use category (Shih and Jordan, 

1993). In addition, liquid water absorption spectral features in hyperspectral imagery 

have also been related to surface layer concentrations and can also be used to retrieve 

surface moisture levels (Bachmann et al., 2012). 

 

HyspIRI’s hyperspectral and thermal infrared imagery may help extend estimates 

of substrate bearing strength and soil moisture to regional and global scales. This would 

be an important product for both civilian and military use. 

Invasive Species in Wetlands 
 Wetlands can be invaded by plant species that displace native plants and degrade 

their habitat. Mapping tools are needed to document the location and extent of such 

invasive species. Pengra et al., (2007) were able to map Phragmites australis, a tall grass 

that invades coastal marshes throughout North America, with Hyperion imagery in the 

wetlands of Green Bay, Wisconsin, USA. Artigas and Yang (2005) used hyperspectral 
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imagery from the Airborne Imaging Spectroradiometer for Applications (AISA) in New 

Jersey, USA to classify marsh conditions based on in situ reflectance spectra of dominant 

marsh species and seasonal spectra of Phragmites australis. Hestir et al., (2008) 

developed a regional-scale monitoring framework to map wetland weeds in the 

Sacramento–San Joaquin Delta, California, USA. They focused on terrestrial riparian 

weed, the perennial pepperweed (Lepidium latifolium), using an airborne hyperspectral 

imager (HyMAP) that collects data at 128 bands in the visible and near-infrared (VNIR; 

0.45–1.5 µm) regions through the shortwave infrared (SWIR; 1.5–2.5 µm) region, at 

bandwidths that range from 10 nm in the VNIR region to 15–20 nm in the SWIR region. 

The spatial resolution of the data was 3 m, with a swath width of 1.5 km. At a field scale, 

Sonnentag et al., (2011) used multispectral webcam imagery to track perennial 

pepperweed in the Sacramento Delta in California. These studies suggest that HyspIRI 

would be useful for mapping invasive species and wetland change.  

Challenges 
 Although darker than most terrestrial vegetation, wetlands are more reflective 

than most non-turbid, open water targets. However, these environments are still subject to 

sun glint (Hochberg et al., 2010). For coastal emergent vegetation, the issue of glint 

becomes much more complex. For example, in salt marshes, tidal emergent vegetation is 

typically erectophile, with small ponds and channels interspersed. These features 

typically range in spatial scale from a fraction of a meter to tens of meters. In these 

systems, glint would undoubtedly contribute to the remotely sensed signal measured by 

HyspIRI with its 60 m nadir pixel size. Naturally, the effect would vary with the solar 

illumination and sensor viewing angles, being more intense at low latitudes and growing 

worse with proximity to the summer solstice. Measurement and modeling capabilities for 

glint in wetlands lag those for shallow and deep oceans. Suitable models or measurement 

techniques have yet to be developed to quantify this effect because the relationship 

between surface roughness and various environmental factors are unknown (Turpie, 

2012). At the same time, emergent vegetation has the benefit of providing useful, 

observable near-infrared (NIR) and SWIR spectral features, which can dominate glint. 

 

 Qualitatively, it is possible to demonstrate glint effects from multi-angle satellite 

images acquired by CHRIS/Proba. Figure 2.1.2 illustrates an example of the effect of 

glint on remote sensing reflectance observed over wetlands. With a nominal view zenith 

angle of 0°, glint is visually apparent in water bodies amongst the vegetated areas (Figure 

2.1.2a). This glint is likely caused by capillary waves patterned by the local wind field. 

With a nominal view zenith angle of 55°, glint is much less visually apparent (Figure 

2.1.2b). These visual glint patterns are supported by sample spectra. For the same region 

of wetland, the 0° nominal view angle spectra (Figure 2.1.3a) have higher reflectance 

values and are more variable than the 55° view angle spectra (Figure 2.1.3b). 

 

 Although using conventional techniques to separate glint from the vegetation 

spectral signal may appear to be challenging, the relatively strong signal from sub-aerial 

vegetation sufficiently dwarfs the glint, consequently presenting a smaller effect 

compared to that found with remote sensing retrievals of water column and benthic 

communities. In addition, wetland vegetation cover tends to reduce surface roughness 

from wind. Thus, the range of angles that are influenced by sun glint are reduced in 
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comparison to ocean water (Vanderbilt et al., 2002). The 11 a.m. equatorial crossing of 

the spacecraft and the 4° tilt of the HyspIRI instrument away from the sub-solar point 

should greatly reduce the effect of sun glint in these coastal and inland wetlands. 

 

 

 
 

 Another challenge with wetland species (e.g., mangroves) discrimination using 

hyperspectral sensors is that, unless the canopy is very dense, there will be gaps exposing 

moist soil or water, which will “contaminate” the pure spectral reflectance signatures of 

the vegetation. Some freshwater marshes may be too small and patchy to be resolved by 

HyspIRI or any other medium resolution satellite, and may require ancillary data. 

Furthermore, freshwater marshes can be floristically diverse and have a more mixed 

vegetative cover producing a more complex, composite spectral signature than most 

Figure 2.1.2 – Multi-angle CHRIS/Proba images of Fishing Bay Wildlife Management 

Area, Maryland. (a) At 0° nominal view zenith angle, glint is visually apparent on water 

bodies interspersed amongst sub-aerial vegetation. (b) At 55° nominal view zenith angle, 

glint is much less apparent. Boxes cover the same ground area in both (a) and (b). This 

region is extracted for statistics shown in Figure 2.1.3. 

(a) (b) 

Figure 2.1.3 – Spectra extracted from regions highlighted by boxes in Figure 2.1.2. The 

ordinate axis is in units of radiance (μW m-2 nm-1 sr -1) for the CHRIS/Proba instrument. 

(a) At 0° nominal view zenith angle, glint produces very high values across the spectrum, 

evidenced by the maximum spectral curve. (b) At 55° nominal view zenith angle, the 

glint effect is greatly reduced. 

 

(a) (b) 
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saltwater wetlands. Finally, the optical properties of any inundated canopies will present 

additional challenges for some of these techniques (Turpie, 2012; Turpie, 2013). 

Mission Relevance 
 Hyperspectral remote sensing data are required to map the location, type and 

spatial extent of wetlands, classify wetland vegetation species/types, or derive wetland 

productivity, hydrologic dynamics, and other critical biophysical and functional 

properties (Brando and Decker, 2003; Christian and Krishnayya, 2009; Hirano et al., 

2003; Jensen et al., 2007; Papes et al., 2010; Pengra et al., 2007; Schmidt et al., 2004; 

Ustin et al., 2004; Yang et al., 2009; Zomer et al., 2009). For instance, using 

hyperspectral imagery and narrow-band vegetation indices, researchers have been able to 

not only discriminate some wetland species but also make progress on estimating 

biochemical and biophysical parameters of wetland vegetation, such as water content, 

biomass, leaf area index, and leaf constituents such as nitrogen (Adam et al., 2010; 

Artigas and Yang, 2006; Filippi and Jensen, 2006; Gilmore et al., 2008; Ozesmi and 

Bauer, 2002; Pengra et al., 2007; Tian et al., 2011; Wang, 2010).  

 

 The spaceborne imaging spectrometer Hyperion has been shown to be able to 

detect fine differences in spectral reflectance, allowing some wetland species 

discrimination (Brando and Decker, 2003; Christian and Krishnayya, 2009; Papes et al., 

2010; Pengra et al., 2007). Hyperion collects data at 220 spectral bands with a spatial 

resolution of 30 m. However, Hyperion is a proof-of-concept mission and does not have a 

global mapping capability; it has a limited SNR; and the mission is nearing the end of its 

planned lifetime. Therefore, in the near future, HyspIRI, if successfully launched, may be 

the only U.S. spaceborne imaging spectrometer that provides the spatial and spectral 

resolution, swath width and SNR required for mapping wetlands at global scales. 

 

 HyspIRI’s VSWIR and TIR sensors will be able to observe hydrologic and hydro-

meteorological processes, including groundwater seepage, nitrogen load, water quality, 

evapotranspiration, etc. (Banks et al., 1996; Bendjoudi et al., 2002; Byers and Chmura, 

2013; Chen et al., 2002; Meijerink, 2002; Moffett, 2010; Mohamed et al., 2004; Xin, 

2004). Once the monitoring model for global wetlands using HyspIRI data is built and 

validated with field data, the hyperspectral and thermal infrared data can be used to 

survey and assess their condition in response to human-made disturbances, natural 

disasters and climate change in near-real time. 

 

2.2 Land/Water Geomorphology 

Science Questions Addressed 
 The land/water geomorphology data products retrieved from HyspIRI data will 

help address the following HyspIRI science questions (from Table 1.2). 

VQ1. What is the global spatial pattern of ecosystem and diversity distributions and how 

do ecosystems differ in their composition or biodiversity? 

VQ4. How are disturbance regimes changing and how do these changes affect the 

ecosystem processes that support life on Earth? 
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TQ5. How does urbanization affect the local, regional and global environment? Can we 

characterize this effect to help mitigate its impact on human health and welfare? 

CQ5. What is the composition of exposed terrestrial surface of the Earth and how does it 

respond to anthropogenic and non-anthropogenic drivers? 

CQ6. How do patterns of human environmental and infectious diseases respond to 

leading environmental changes, particularly to urban growth and change and the 

associated impacts of urbanization? 

Candidate Products or Applications 

Shoreline Changes and Floods (Disturbances) 
 Quantifying shoreline change requires accurate delineation of shoreline positions 

on image time-series where tidal influence is minimal. Several methods have been 

proposed and used to derive shoreline positions from passive remote sensing, which may 

be tested with HyspIRI VSWIR or similar data. These include a single-band method to 

use a threshold to separate land from water (Bayram et al., 2008), an edge filter method 

(Scott et al., 2003), and an unsupervised classification method such as the iterative self-

organizing data analysis (ISODATA) classification (Armenakis et al., 2003). Similarly, 

other well-developed indices, including the Normalized Difference Vegetation Index 

(NDVI), defined as 

 
NDVI = (RNIR – RRED)/(RNIR + RRED)       (1) 

 

where R is reflectance, and Normalized Difference Water Index (NDWI), defined as 

 
NDWI = (RGREEN –RNIR)/(RGREEN+ RNIR)      (2) 

 

are also used for water/land delineation as well as for flood mapping (McFeeters, 1996; 

Domenikiotis et al., 2003; Jain et al., 2005; Lunetta, 2006; Ouma & Tateishi, 2006; Xu, 

2006). A recently developed index to delineate floating materials in the open ocean, 

namely the floating algae index (FAI, Hu, 2009), was also found effective in delineating 

the land-water interface (Feng et al., 2012) because of its relative tolerance to changing 

aerosols and solar/viewing geometry. 
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While each method has its own pros and cons, the fundamental principle is the 

same: water absorbs light strongly in the NIR and SWIR wavelengths, resulting in much 

reduced reflectance as compared with other wavelengths for the same image pixels or 

compared with other pixels for the same wavelengths. For example, the absorption 

coefficient of water at 1640 nm is 669 m-1. A 1-cm layer of water over a surface will 

therefore reduce its reflectance by a factor of e -2 * 0.01 * 669 = 0.00015% (the factor of two 

accounts for the two-way light attenuation). Likewise, a 1-mm water lens will reduce the 

reflectance to about 26%. In other 

words, single-band images using 

these wavelengths will appear dark 

over water and brighter over land. 

The various methods simply seek 

efficient ways to extract this 

information while minimizing the 

impacts of the observing conditions 

or increasing computational 

efficiency.  

 

A recent example of using 

Landsat 30-m resolution data to 

document decadal shoreline 

changes along central Florida’s 

west coast is given in Yu et al., 

(2011). The time-series images 

were carefully selected to be within 

a tidal range of 9 cm, so the tidal 

influence on the shoreline 

delineation accuracy would be 

within one Landsat pixel for a shelf 

slope of 3‰ - 24‰. Results 

indicated both beach erosion and 

beach accretion in different places 

between 1987 and 2008 as a 

consequence of natural processes 

and human influence (e.g., beach 

nourishment).  Like Landsat, high 

latitude revisit times for HyspIRI 

are closer to a few to several days, 

affording more opportunities to 

observe more rapid change along coastlines (Oey et al., 2007). 

 

 The HyspIRI VSWIR data cover a wide spectral range from the visible to the 

shortwave infrared. Together with their high spatial resolution, the data will be 

particularly suitable for shoreline delineation/change detection as well as for flood 

mapping, as the water and land pixels can be classified using the candidate methods 

outlined above. In addition, the same concept can be extended to the detection of ice 

Figure 2.2.1. – Shoreline delineation from nine 

Landsat TM images covering central West Florida 

near Lido Key. Inset image shows an example of 

how the determined shoreline (red line) traces the 

land-water interface pixels. The two white circles 

highlight the two shoreline sections that ex-

perienced opposite shoreline changes (erosion and 

accretion). Figure adapted from Yu et al., (2011). 
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edges over water because of the reflectance contrast between ice and water. This capacity 

will enable not only the ice edge delineation and ice size estimation, but also studies of 

ocean biogeochemistry in adjacent waters. 

Groundwater Discharge 
 Groundwater discharge to coastal regions impacts local ecological conditions by 

introducing local temperature changes, lower salinity and nutrient loads that are often 

high.  Nutrient supply by groundwater discharge has been linked to eutrophication and 

has been suggested as a potential precursor to harmful algal blooms after hurricanes in 

Tampa Bay (Hu et al., 2006) and Masan Bay in South Korea (Lee and Kim, 2007), or 

increased bacterial concentrations in the surf zone (Boehm et al., 2004).  Detecting 

locations and quantifying the contribution of groundwater discharge into coastal waters 

are challenging because field observations are limited.  However, there are remote 

sensing techniques that have been proven a useful tool for monitoring groundwater 

discharge using temperature differences between coastal water and groundwater.  

 

 The temperature of groundwater discharges is almost constant throughout the 

year, and the use of thermal remote sensing to delineate groundwater discharge to the 

coastal regions has been reported in many places. For example, Banks et al., (1996) used 

airborne Thermal Infrared Multispectral Scanner (TIMS) images to identify the location 

and the spatial extent of groundwater discharge to the Gunpower River in Chesapeake 

Bay, and Portnoy et al., (1998) used the Landsat Enhanced Thematic Mapper (ETM+) 

TIR imagery and shoreline salinity surveys to characterize groundwater discharge to an 

estuary in Cape Cod.  Other examples include McKenna et al., (2001); Miller and Ullman 

(2004); and Wang et al., (2008), who used TIR imagery to identify groundwater 

discharges in Delaware's Inland Bays.  In addition, the Great Bay Estuary, New 

Hampshire, Waquiot Bay, Massachusetts, and Hawaii were also noted by Roseen et al., 

(2001) and Johnson et al., (2008), respectively. 
 

 Groundwater discharge locations (see Figure 2.2.2) have been identified in 

Delaware on the north shore of Rehoboth Bay west of the Lewes and the Rehoboth 

Canal, on Herring and Guinea Creeks, on the north shore of Indian River and on the north 

shore of Indian River Bay near Oak Orchard. The identified locations are consistent with 

other indicators of ground-water discharge.  
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Figure 2.2.2 – Ground-water discharge areas in the Delaware Inland Bays identified 

using Landsat 7 imagery acquired on February 19, 2002.  This figure is adopted from 

Wang et al., (2008). 

 

In addition to thermal effects of the groundwater on coastal ecosystems, groundwater 

discharge was studied using the Compact Airborne Spectrographic Imager 550 (CASI-

550) sensors (Kolokoussis et al., 2011). These efforts used turbidity-related water 

Inherent Optical Properties (IOP) to demonstrate that turbidity can be effectively 

identified and estimated using certain band ratios or feature-extraction methods.  Since 

the groundwater discharge affects the water quality in the coastal regions, hyperspectral 

remote sensing has been used to monitor water quality related properties (Lee et al., 

1994; Gould and Arnone, 1997; Flink et al., 2001; Kallio et al., 2001; Ostlund et al., 

2001; Ammenberg et al., 2002; Galvao et al., 2003; Yang and Pan, 2007).  According to 
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Hakvoort et al., (2002), estimation and mapping of water quality constituents, such as 

concentrations of dissolved organic matter, chlorophyll or total suspended matter from 

optical remote sensing techniques, have proved to be useful and successful.    

Challenges 
The 1640-nm band enables highly accurate classifications of water and land 

pixels.  However, for shoreline delineation and flood mapping, there are several practical 

considerations for accuracy assessment. The first is the geo-location accuracy of the 

individual pixels on satellite images, which is often in the order of a half pixel size (Root 

Mean Square, or RMS, uncertainties). For example, the highest geo-location accuracy of 

MODIS data for a nadir view is about 150 m (Wolfe et al., 2002), about half of the 250-

m pixel. For Landsat data, the half-pixel accuracy often requires manual geo-rectification 

using known ground control points (e.g., Yu et al., 2011). Assuming the principle is 

universal, the HyspIRI land and water classification uncertainties will be roughly of a 

half pixel. The second is the influence of tides, which can range from centimeters to 

meters depending on the location. To achieve the half-pixel accuracy in shoreline 

delineation, the changes in tides must be restricted to a range which, after accounting for 

the slope of the inter-tidal zone, will result in less than a half-pixel uncertainty (Yu et al., 

2011).  The third is the revisit frequency.  Due to the high spatial resolution requirement, 

HyspIRI may revisit the same place less frequently than Landsat (19 days at the equator, 

less at higher latitudes). This not only creates difficulty in finding time-series data that 

meet the tidal change constraint for shoreline change assessment, but also makes it 

difficult for flooding assessment because the dry/wet conditions over land may change 

quickly.  Therefore, for flooding events, the sensor may be tilted to assure rapid response.  

Overall, although there are some potential limitations for shoreline delineation and flood 

mapping, it is possible to overcome these difficulties with engineering advancement and 

algorithm improvement to achieve an RMS accuracy of a half pixel.  However, it should 

be noted that this challenge is lessened at higher latitudes. 

  

 Hyperspectral remote sensing has been used to map optical water quality 

concentrations of colored dissolved organic matter, chlorophyll and total suspended 

matter simultaneously in the complex waters of estuarine and coastal systems.  The issues 

of accuracy and limitations in the use of HyspIRI for groundwater discharge into the 

coastal regions depend on the algorithms for estimating biogeochemical constituents, as 

described in Section 2.4.   Because HyspIRI performs better than Hyperion with respect 

to its SNR and its spatial, spectral and radiometric resolutions, its accuracy for 

estimations of water quality related properties should be better.  Compared to HICO 

measurements, HyspIRI provides additional TIR observations, which are critical to 

monitoring thermal variations in the coastal regions due to groundwater, run-off and river 

discharges.   

Mission Relevance 
Numerous natural and anthropogenic causes can result in shoreline changes, for 

example, sea level change, hurricanes, coastal circulation, riverine discharge patterns, 

beach nourishment and sand dredging (Wu, 2007). Such changes may affect coastal zone 

resilience to storm surge and flooding, with significant impacts on ecosystem health and 

species diversity (Desantis et al., 2007). The changes may also have important socio-
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economic consequences on local residency and tourism. Thus, it is important to assess 

shoreline changes periodically for management decision support, such as beach 

nourishment (e.g., location and frequency). Likewise, flooding (or drought) events from 

either extreme weather or poor management (e.g., damage of a levee) often lead to 

property loss, economic hardship and threat to people’s life. In addition, rapid changes of 

the dry/wet conditions can change the surface exposure periods to water and sunlight, 

therefore influencing the local ecosystem (e.g., Kanai et al. 2002). Accurate estimation of 

the flood patterns is a first important step to help flood control, search and rescue, land 

use planning and ecological conservation. The unique capacity of HyspIRI enabled by its 

high spectral and high spatial resolutions will greatly enhance our current ability to 

provide accurate maps of shoreline changes and flood maps for targeted areas, and 

provide useful tools for managers, researchers, environmental groups and the general 

public for the wellbeing of coastal zones. 

 

Groundwater discharge has been considered a potentially significant diffuse 

source of nutrients, dissolved substances and diffuse pollution to coastal regions (Leote et 

al., 2008).  Anthropogenic materials, such as pesticides, herbicides, chemical fertilizers 

and petroleum products, are common groundwater pollutants. These pollutants usually 

enter groundwater when polluted surface water percolates down from the Earth’s surface.  

Relatively small groundwater discharge rates can deliver comparatively large quantities 

of nutrients and pollutants to coastal areas. Leaking underground storage tanks are 

another major source of groundwater pollution. It is estimated that there are millions of 

underground storage tanks in the United States. Agricultural and lawn application of 

fertilizers also present a major diffuse source of nutrients that can enter coastal and inland 

waters through ground water discharge. 

 

 The difficulty of studying the diffuse sources of pollutants into estuarine and 

lacustrine waters has limited the regulation and management of coastal and inland water 

quality.  The combination of the high spatial resolution hyperspectral VSWIR and 

thermal information from HyspIRI provides a unique opportunity to map groundwater 

discharge sites and their effect on surrounding biological processes.   Further combining 

the HyspIRI remote sensed data, GIS data, and field measurements could provide an 

unprecedented capability for characterizing groundwater flow systems and discharge-

recharge relationships. 

 

 In addition to land/water geomorphology, HyspIRI can be used in studying ice 

geomorphology.   Global warming is altering the timing, rate and extent of formation, 

melting and breaking of the ice pack and ice shelves at high latitudes.  As ice melts, fresh 

water strongly affects phytoplankton ecology. Phytoplankton form blooms within the ice 

and extensive ice edge blooms near ice edges (Muller-Karger, 1984; Muller-Karger et al., 

1987a, 1987b and 1990). This phenomenon can be strongly affected by climate change 

(Perrette et al., 2011). Accordingly, it is critically important to study phytoplankton in ice 

pools (Lee et al., 2012), and changes in that environment as a result of climate change.  

HyspIRI is an appropriate sensor studying both thermal and biogeochemical constituents 

around ice edges.   However, there are challenges using HyspIRI, such as, low irradiance 

(hence lower SNR for the sensor) and atmospheric adjacency effects.  Instrument stray 
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light characteristics accentuated by the stark contrast of the ice edge will also require 

careful prelaunch testing.  These problems may be partially compensated by the shorter 

revisit period for polar regions (closer to 4-5 days for the spectrometer, rather than 19 

days at the equator) and the low sun glint at high latitudes. 

2.3 Water Surface Feature Classification 

Science Questions Addressed 
 The ability to classify water surface features using HyspIRI data will help address 

the following HyspIRI science question (from Table 1.2). 

VQ1. What is the global spatial pattern of ecosystem and diversity distributions and how 

do ecosystems differ in their composition or biodiversity? 

Candidate Products or Applications 
Many materials and marine plants can float or aggregate on the ocean surface, 

leading to enhanced reflectance in the NIR and possibly other wavelengths. These 

primarily include macro algae of Sargassum spp., macro algae of Ulva prolifera, 

cyanobacterium Trichodesmium spp., emulsified oil and marine debris (plastic or other 

trash) (see Figure 2.3.1). Differentiating and quantifying these cover types are 

complicated by their enhanced reflectance in the red-NIR wavelengths, and sometimes 

even in the SWIR wavelengths. In particular, the atmospheric correction that assumes 

“black pixel” (i.e., negligible remote sensing reflectance or Rrs) in the NIR (Gordon, 

1997) or in the SWIR (Gao et al., 2000; Wang and Shi, 2007) wavelengths will fail. This 

poses three challenges for the detection and quantification of these surface floating 

materials from space-borne remote sensing: 1) How to delineate these features in an 

automatic fashion; 2) How to differentiate the identified features (i.e., what are they?); 3) 

How to quantify the identified features (e.g., biomass or volume).   
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There have been only a few published studies to show the capabilities of current 

multi-band sensors in detecting some of these features. The limitations have been in the 

spectral, temporal, and spatial resolution. Some of these limitations will be overcome by 

the HyspIRI VSWIR data, covering a wide spectral range from the visible to the 

shortwave infrared at high spatial resolution. 

 

Gower et al., (2006) is perhaps the first study that demonstrates the detection and 

quantification of Sargassum using MERIS and MODIS, based on a few assumptions. In 

the study, the reflectance red edge at the 709-nm MERIS band (300-m resolution) is 

examined, and elevated reflectance is assumed to be caused by Sargassum surface 

aggregations. This concept has been extended to MODIS data at 859-nm (250-m 

resolution) to detect Sargassum in the Gulf of Mexico and Ulva prolifera (a green 

seaweed) in the Yellow Sea and East China Sea using a floating algae index (Hu, 2009), 

because the 859-nm band does not saturate over bright targets. However, surface 

Trichodesmium mats also show elevated reflectance in the NIR (Subramaniam et al., 

2001) including the MERIS 709-nm and MODIS 859-nm bands. Although the overall 

MERIS spectral shape has been used in Gower et al., (2006) to differentiate Sargassum 

from Trichodesmium, more direct spectral evidence is still required. Hu et al., (2010a) 

combined MODIS land bands and ocean bands to examine the spectral curvatures in the 

blue-green to unambiguously differentiate Trichodesmium from other look-alike features, 

based on the unique pigments in Trichodesmium. This concept will be extended to 

(a) 

Figure 2.3.1 – Materials and marine plants floating on the ocean surface. (a) Sargassum 

spp. in the Gulf of Mexico;  (b) Ulva prolifera bloom off Qingdao, China; (c) 

Trichodesmium mats in the Gulf of Mexico; (d) Weathered oil from the Deepwater 

Horizon oil spill in the Gulf of Mexico; (e) Marine garbage patch (fishing net, plastic,  

and other debris) in the Pacific ocean. 

 

(b) (c) 

(d) (e) 
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HyspIRI, and similar algorithms will be developed and enhanced for the HyspIRI 

hyperspectral data. 

 

The detection algorithms will be based on the different spectral shapes (not 

magnitudes) of the surface floating materials.  Although field-based measurements are 

still required, some preliminary measurements are available from either refereed or gray 

literature.  Figure 2.3.2 shows examples of their reflectance spectra collected by several 

groups.  The spectra are demonstrated here to illustrate the difference in their spectral 

shapes rather than the magnitudes, and are intended to differentiate the various materials.  

Although they all show enhanced reflectance in the NIR, their spectral shapes in the 

visible are different: Sargassum mats have a unique reflectance decrease between 600 

and 650 nm; Ulva prolifera show typical reflectance of green plants; Trichodesmium 

mats show unique spectral curvatures in the blue-green that can be captured by the 

current MODIS bands; emulsified oil show unique spectral curvatures around 1200 nm 

and 1700 nm; marine debris show smoothly increased reflectance across the entire 

spectrum as compared to nearby water. 

 

The proof-of-concept of using multi-band satellites for the detection of the above 

marine organisms and materials has heavily demonstrated in the literature (Gower et al., 

2006; Hu, 2009; Hu et al., 2009, 2010a&b; He et al., 2011; Gower and King, 2011; Hu et 

al., 2011).  Given the known and distinguishable spectral characteristics of these surface 

floating features, detection of them using higher spatial and higher spectral resolution 

HyspIRI will be improved, with the possibility to quantify them in aerial coverage and 

mass.  Specifically, the following products are possible from HyspIRI are possible: 

 

1) Maps of delineated surface features of Sargassum, Ulva prolifera, oil 

slicks, and marine debris (classification), 

2) Estimates of aerial coverage of the classified features (quantification), 
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3) Estimates of biomass of Sargassum and Ulva prolifera, surface oil 

volume, and mass of marine debris (quantification). 

 

(e) 

Figure 2.3.2. – Changes in reflectance spectral shapes from different materials and marine 

plants floating on the ocean surface. (a) Sargassum spp. in the Gulf of Mexico (GOM) (Hu 

unpublished data); (b) Ulva prolifera bloom off Qingdao, China (He et al., 2011); (c) 

Trichodesmium mats in the Florida Keys and coastal waters off Puerto Rico (Hu et al., 2010a); 

(d) Weathered oil from a lab experiment (Clark et al., 2010); (e) Various marine garbage 

(fishing net, plastic and other debris) from an experiment (data courtesy of Daniel Sensi, USF 

College of Marine Science). 

(c) 

(a) (b) 

(d) 
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However, despite the preliminary success of using existing multi-band data for 

some of these products, technical challenge still remains on the algorithm development 

and especially on the accuracy assessment. 

Methods 
 Several steps are required to derive the products above, each contributing some 

amount of uncertainty. 

 

 First, assuming a well-calibrated (both radiometrically and spectrally) HyspIRI 

measurement, atmospheric correction (AC) is required to remove most of the atmospheric 

effects, especially those that interfere with the spectral shape classification.  For feature 

delineation, this is perhaps not required because a feature detection algorithm can rely 

purely on the spatial contrast (edge detection) rather than on spectral shape.  For feature 

classification, a crude AC is needed.  To quantify the classified feature, a more accurate 

AC is required to obtain the surface reflectance of the feature.  This can be difficult as the 

non-zero surface reflectance in the NIR or SWIR will cause atmospheric correction 

failure (e.g., Figures 2c & 2d of Gower et al., 2006). A nearest-neighbor atmospheric 

correction (Hu et al., 2000) may be implemented to use atmospheric properties derived 

from the nearby water to remove the atmospheric effects over the already-delineated 

feature. This approach has been used to derive surface reflectance over oil slicks (Hu et 

al., 2003) and Trichodesmium mats (Hu et al., 2010a). The uncertainties in the derived 

surface reflectance are primarily from the residual errors of the atmospheric correction, in 

the order of <0.002 (dimensionless reflectance) at 443 nm and <0.0003 at 670 nm 

(Gordon, 1997; Hu et al., 2013). 

 

 Second, the feature delineation will rely on the spatial contrast in either single-

band reflectance or multi-band product (e.g., Hu, 2009. Also see Figure 2.3.3 for 

example). This type of image segmentation technique has been established for decades 

and is mature. One potential uncertainty comes from the difficulty in differentiating these 

features from other look-alike features, such as cloud edge or small cloud patches (note 

that cloud detection over sun glint or other bright targets is still a challenge). Further, 

ocean fronts may appear like isolated slicks under severe sun glint (the optical contrast 

between fronts and nearby waters is exaggerated, He et al., 2011). However, these 

potential false delineations can be removed by the following step using spectral analysis. 

 

 Third, all delineated features through the above edge detection will be examined 

through the spectral analysis using the spectral library established from the field or 

laboratory measurements (e.g., Figure 2.3.2). The accuracy of this spectral classification 

relies on: 1) The signal-to-noise ratio of the HyspIRI measurements; 2) Whether an 

image pixel has full or partial coverage mixed with water; 3) Accuracy of atmospheric 

correction. If the pixel of interest is covered mostly by open water, it is possibly that the 

spectral signatures of the various features (Figure 2.3.2) may not be detected. Hu (2009) 

estimated that with the SNR of MODIS, once the macroalgae forms a line of several 250-

m image pixels, a thickness of 5-10 m appears to be the lower detection limit. Currently, 

the threshold of the feature/water mixing ratio is unknown, but this represents one major 

uncertainty source in generating the feature-specific distribution maps. 
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 Fourth, area coverage (in km2 or acres) could be quantified from the feature-

specific distribution maps. The accuracy of this step relies on how well we can determine 

the proportions of feature/water in a pixel of interest. If the algorithm used to detect the 

feature is a linear combination of spectral bands (e.g., Hu, 2009), a linear unmixing 

scheme can be developed (Settle and Drake 1993; Hu et al., 2010b). Otherwise, a field-

based experiment is required to determine the unmixing algorithm. The accuracy of this 

step is currently unknown due to lack of field measurements, yet the unmixing 

uncertainty is unlikely to exceed 50%. 

 

 Finally, the most challenging task is to quantify the delineated and classified 

features in order to generate biomass (or oil volume or mass) distribution maps. The 

difficulty arises from a lack of available measurements to establish relationships between 

these quantities and their associated spectral reflectance (magnitudes). Gower et al. 

(2006) and Gower and King (2011) estimated Sargassum biomass based on several crude 

assumptions, yet these assumptions require field validation. Likewise, the assumption 

used in Hu et al. (2010b) on the biomass of Ulva prolifera per unit area also needs field 

validation. While measurements of Sargassum and Ulva prolifera biomass may be 

straightforward, determining biomass Trichodemium is more difficult because the 

presence of a boat may disturb the floating mats, resulting in inaccurate sample 

(a), MODIS FAI image, 12/8/2009 

Sargassum slicks 

Bermuda 

(b), Quickbird 

image, 12/8/2009 

Figure 2.3.3. – (a) MODIS/Terra FAI image (250-m resolution) near Bermuda on 12/8/2009 

showing surface slicks that are thought to be Sargassum; (b) Color-infrared WordView-2 

image (2-m resolution) on the same day showing a long slick thought to be Sargassum, 

corresponding to the slick annotated with a yellow arrow in (a). The inset map shows the 

location of Bermuda (red circle). 

Sargassum slick caught 

on Quickbird image 



 39 

collection. This is different from determining Trichodemium biomass suspended in the 

water column (Westberry et al., 2005). Even more difficult is the determination of oil 

volume (or thickness) from the field. To date, although laboratory experiments can easily 

determine the oil thickness under a controlled environment (e.g., Svejkovsky and Muskat, 

2009; Wettle et al., 2009; Clark et al., 2010), there is nearly no field-based oil thickness 

measurement, not to mention how to relate the spectral shapes and magnitudes with the 

oil thickness (and possibly type. For example, fresh versus emulsified). The laboratory 

based works of Wettle et al., (2009) and Clark et al., (2010) focused on, respectively, 

fresh and emulsified oils. How these lab-based relationships are used in the real 

environment is still an area of active research. In short, the uncertainties in the estimated 

quantifies of these features are currently unknown and will require further research. This 

is especially true for the delineation and quantification of marine debris, as there is 

currently not a single demonstration to show even the possibility of detecting marine 

debris from satellite optical remote sensing. 

Challenges 
 The fundamental questions that must be addressed in order to derive surface 

feature products are: 

 

1) Does the feature produce a significant signal in the satellite imagery? 

2) Can the feature be spectrally differentiated from surrounding area? 

3) Can the feature be further quantified (e.g., thickness, biomass, etc.)? 

 

Edge detection and spectral analysis answer the first two questions should be positive 

(except for the marine debris case). The third is currently very challenging, especially for 

the mass (volume) estimations. This represents the most technical challenge and 

limitation for HyspIRI surface feature observations.  However, this challenge may be 

addressed with targeted field measurements and analysis.  

 

 Of the listed features, marine debris is perhaps the most difficult to observe from 

space due to two reasons: they are typically small, and they can be submerged in water 

instead of floating on the surface. It would be difficult to detect them from space, even 

from high-spatial and high-spectral HyspIRI measurements. On the other hand, if they 

aggregate near ocean fronts or on beaches to form an area or slick sufficiently large for 

the 60-m HyspIRI pixels, it may be possible to detect and spectrally classify these 

features. However, because of the limited footprint and revisit frequency (every 17 days), 

one may need some a priori knowledge in order to tilt the sensor for the area of interest 

(e.g., after a major tsunami event). 

 

 The limitation of HyspIRI coverage and revisit frequency also applies to all other 

feature detection and quantification, as they are not spatially or temporally static. Even 

with the tilting capability, it would be difficult to trace a feature or develop a time series 

to document their temporal changes, especially when the ocean is well mixed under high 

winds. Thus, the detection and quantification will be opportunistic in nature. However, 

once identified from HyspIRI measurements, the features can be monitored and studied 

with other complementary measurements, such as targeted airborne surveys or those from 
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geo-stationary platforms (e.g., GEOstationary Coastal and Air Pollution Events, or GEO-

CAPE; see Fishman et al., 2012). 

Mission Relevance 
 Accurate and timely detection of the various ocean surface features is important 

for both scientific research and management decision support.  

 

 Pelagic Sargassum provides important habitat (food, shade, shelter from 

predators) to fish, shrimp, crabs and other marine organisms, including several threatened 

species of turtles (South Atlantic Fishery Management Council, 2002; Rooker et al., 

2006; Witherington et al., 2012). Knowledge of Sargassum occurrence and biomass 

distributions help plan field surveys to study these marine organisms and their associate 

ecosystem. Sargassum may also play an important role in marine primary productivity, 

and thus, contributing to carbon cycling (Gower et al., 2006). Further, it may affect local 

biogeochemistry through nutrient remineralization, enhanced colored dissolved organic 

matter and bacteria activities (Lapointe, 1995; Zepp et al., 2008). Sargassum can also be 

a natural source of fertilizer for dune plants, which help to stabilize coastal dune systems 

from erosion (Tsoar, 2005, Anthony et al., 2006). Likewise, the green macroalgae, Ulva 

prolifera, also serve as important habitat for marine animals, and can be utilized as 

fertilizers. On the other hand, excessive Sargassum or other macroalgae on the beach 

represents a nuisance and a health hazard, and is a burden to local management since they 

have to be physically removed in a prompt fashion (e.g., Hu and He, 2008). Many 

beaches around the Gulf of Mexico (GOM) and in the southern Caribbean suffer from 

Sargassum deposition on a regular basis. Providing timely information regarding the 

occurrence of Sargassum or other types of macroalgae bloom is useful for both research 

and management, including implementation of harvesting policy, equipment rental for 

beaching cleaning and guidance on recreational fishing.  Although HyspIRI is not 

designed to support routine monitoring, any data would inform scientific and decision-

making stakeholders.  Also, HyspIRI data can be used to develop techniques based on 

hyperspectral data to support more routine monitoring in future missions. 

 

 Nitrogen fixation by Trichodesmium plays a significant role in global nitrogen 

and carbon cycles (Capone et al., 1997; Gruber and Sarmiento, 1997; Karl et al., 1997). 

Trichodesmium blooms have also been proposed to serve as a significant nitrogen source 

under oligotrophic conditions for the toxic phytoplankton species Karenia brevis (Walsh 

and Steidinger, 2001), and thus could be used a precursor to forecast Harmful Algal 

Blooms (HABs). Timely observation of Trichodesmium blooms can thus improve 

understanding of nutrient cycling and the dynamics of K. brevis HABs. To date, it has 

been difficult to obtain timely and synoptic assessments of the distribution of 

Trichodesmium in optically complex waters, although the MODIS full spectral data at 

coarse resolution have been demonstrated useful (Hu et al., 2010a). The ability of 

HyspIRI to observe Trichodesmium blooms at higher-resolution than MODIS will 

provide unprecedented information on studies of nutrient and carbon cycles in coastal 

oceans as well as forecasting capacity for HABs monitoring. 

 

 The Deepwater Horizon oil spill sets a perfect example on the importance of 

timely detection and mapping of surface oil slicks (Hu et al., 2011). It is not only critical 
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in initializing and validating oil tracking models (Liu et al., 2011), but also important to 

help guide field activities (measurements and mitigation). Unfortunately, there has been a 

lack of quantitative measure of the surface oil volume.  Such difficulty may be overcome 

with the HyspIRI mission provided targeted efforts in establishing appropriate algorithms 

in relating spectral reflectance to surface oil volume (or thickness). In the absence of 

major oil spill events, the detection capacity will be useful to identify small-scale spills 

from ships and possibly for finding new oil seeps. 

 

 Garbage patches (e.g., fishing nets) and marine debris (small plastic pieces) are 

hazard to fish, turtles, sea birds, coral reefs, marine mammals and even human activities 

(Laist, 1987; Derraik, 2002; Gregory et al., 2009).  Although the marine debris has been 

found in convergence zones of the North Atlantic (Carpenter and Smith, 1972; Law et al., 

2010) and Pacific Oceans (Venrick et al., 1973), where currents are driven by wind 

convergence, our present knowledge on marine debris is very limited (Thompson et al., 

2004). The most abundant form of plastic marine debris at the open ocean surface 

consists of millimeter-sized fragments of consumer plastics with an average material 

density of 965 kg/m3 (polyethylene, polypropylene and foam polystyrene) that is less 

than the surface sea water density of 1027 kg/m3, so they are often found floating near the 

sea surface. While biological effects were unknown, many of the plastics contain 

considerable quantities of polychlorinated biphenyls (PCBs) as plasticizers, and that these 

plasticizer materials were likely lost into the surrounding seawater during weathering.  In 

addition, they might be incorporated into marine algae and animals (Carpenter and Smith, 

1972). Indeed, marine debris is now widely recognized as one of the major anthropogenic 

contaminants in the world’s oceans (Law et al., 2010). Detection and quantification of 

marine debris will help understand their impact on the marine ecosystem as well as assist 

in mitigation efforts such as beaching cleaning. The remote sensing algorithms on marine 

debris detection, however, need to be developed before a solid application can be 

implemented for HyspIRI. 

2.4 Water-Column Retrievals 
 

The launch of sensors with more spectral channels and better spatial and spectral 

resolutions than those of CZCS, combined with progressively advanced algorithm 

development by the science community, has expanded the scope of ocean color 

applications of satellite data beyond merely mapping global oceanic biomass. Sensors 

with high spatial and spectral resolutions enable the retrieval of a large number of 

geophysical parameters from satellite-derived water-leaving radiances, such as 

phytoplankton concentration, concentration of dissolved organic matter, diffuse 

attenuation coefficient, backscattering coefficient, suspended sediment concentration, 

phytoplankton community structure, etc. Improvements in the spatial and spectral 

resolutions have enabled observations in inland, estuarine, and coastal waters in addition 

to open ocean waters for which the legacy sensors were designed. 

 

The launch of a hyperspectral, high-resolution sensor will open a new era in the 

observation and monitoring of the ocean and, in particular, the coastal environment. 

Using the high spectral resolution of HyspIRI, we can expect to not only improve the 

accuracy of the retrieval (e.g., chl-a concentration, inherent optical properties), but to also 
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derive new products that were not retrievable using multispectral sensors (e.g., pigment 

composition and new land-ocean ecosystem observations). This section discusses the 

retrieval of various optical and bio-optical properties routinely measured by multispectral 

ocean-color sensors, and the improvements that could be achieved with data from 

hyperspectral sensors such as HyspIRI over coastal and inland waters. 

Science Questions Addressed 
 The water-column data products provided by HyspIRI will help answer the 

following science questions. 

VQ1. What is the global spatial pattern of ecosystem and diversity distributions and how 

do ecosystems differ in their composition or biodiversity? 

VQ2. What are the seasonal expressions and cycles for terrestrial and aquatic ecosystems, 

functional groups, and diagnostic species?  How are these being altered by changes in 

climate, land use, and disturbance? 

VQ3. How are the biogeochemical cycles that sustain life on Earth being 

altered/disrupted by natural and human-induced environmental change?  How do these 

changes affect the composition and health of ecosystems and what are the feedbacks with 

other components of the Earth system? 

VQ4. How are disturbance regimes changing and how do these changes affect the 

ecosystem processes that support life on Earth? 

CQ1. How do inland, coastal, and open ocean aquatic ecosystems change due to local and 

regional thermal climate, land-use change, and other factors? 

CQ4. How do species, functional type, and biodiversity composition within ecosystems 

influence the energy, water and biogeochemical cycles under varying climatic 

conditions? 

Candidate Products or Applications 
 

One of the primary differences among algorithms for biophysical parameter 

retrieval lies in the choice of wavelengths used for the retrieval. The choice of 

wavelengths used in a retrieval algorithm is a critical factor because the goal is to capture 

and take advantage of the unique spectral signature of the bio-optical product of interest. 

Hyperspectral data offer more choices of wavelengths, and consequently, an improved 

capability to capture spectral signatures of the bio-optical products of interest. This 

section addresses the use of various types of algorithms for retrieving various bio-optical 

parameters of the water column from Rrs, measurements and the expected improvement 

in their performance with the use of hyperspectral data. The approaches for the 

development of these algorithms can be classified into two broad categories: empirical 

and analytical. Empirical algorithms are fundamentally data-driven and include band 

ratios (Gordon et al., 1983; O’Reilly et al., 1998), band differences (Hu et al., 2012b), 

Principal Component Analysis (PCA) (Sathyendranath et al., 1994; Craig et al., 2012) 

and Artificial Neural Networks (ANN) (Schiller and Doerffer, 1999; Ioannou et al., 

2011), with implicit or explicit empirical expressions that relate Rrs to the biophysical 

product of interest. The analytical algorithms are theoretically driven, and include 
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techniques based on spectral inversion (Roesler and Perry, 1995; Hoge and Lyon, 1996; 

Lee et al., 2002), spectral optimization (Lee et al., 1999), and look-up-tables Carder et 

al., 1991; Mobley et al., 2005). These algorithms encompass a wide range of complex 

approaches, but are generally derived from the following basic radiative transfer equation 

that relates Rrs to the optical properties of water (Gordon et al., 1975): 
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Where a(λ) and bb(λ) are the bulk absorption and backscattering coefficients of water and 

its constituents, respectively, and G(λ) is a scaling factor that accounts for geometrical 

conditions, bidirectional effects and the state of the air-water interface. 

 

Many algorithms are based on a combination of empirical and analytical 

approaches. For example, empirical algorithms such as ANN use datasets that are 

developed based on the radiative transfer model.  Some algorithms based on the 

analytical radiative transfer model are empirically parameterized using datasets collected 

in situ (Dall′Olmo and Gitelson, 2005). Such algorithms are often referred to as semi-

empirical or semi-analytical algorithms. 

 

A discussion of the merits of each algorithm for each product is beyond the scope 

of this document. The following is a brief discussion on how HyspIRI might improve 

retrieval accuracies. Further work is required to quantitatively estimate the quality of 

these products and their applicability to specific science questions. 

 

Inherent Optical Properties 
The optical properties of water are conventionally divided into two classes: (1) 

Inherent Optical Properties (IOPs); and, (2) Apparent Optical Properties (AOPs). The 

inherent optical properties depend only on the medium (i.e., water) and are independent 

of the ambient light field within the medium, while the apparent optical properties depend 

on the medium as well as the geometric structure of the ambient light field within the 

medium. 

Absorption Coefficient 
Total absorption and backscattering are the two main drivers of the magnitude and 

shape of the reflectance signal; they are crucial parameters for the characterization and 

inversion of the water-leaving radiance. A number of algorithms have been developed to 

derive either the total absorption coefficient or the individual absorption coefficients of 

the primary absorptive components, namely, pure seawater (aw), phytoplankton (aph), and 

yellow substances (ay) (IOCCG, 2006). The retrieval of the absorption coefficient is 

performed at a given set of wavelengths or over the entire visible spectrum. The 

absorptions by detritus and yellow substances are often combined into a single 

component due to the similarity of their spectral shapes. Semi-empirical and analytical 

algorithms will see an immediate gain from the increased number of wavelengths at 

which the absorption coefficient could be retrieved. For example, the Quasi-Analytical 
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Algorithm (QAA) developed by Lee et al., (2002) would be able to provide the total 

absorption and phytoplankton absorption coefficients at all visible wavelengths of 

HyspIRI (Lee et al., 2005). Subsequent decomposition into absorptions by individual 

components would therefore be more accurate, as the number of wavelengths available to 

characterize the absorption would significantly outnumber the number of individual 

components. 

 

Figure 2.4.1 shows the absorption coefficients of various marine components in 

the visible and near-infrared regions. The measured reflectance spectrum is roughly 

inversely proportional to the total absorption spectrum, and hence, is marked by spectral 

features due to absorption by water-column constituents. The high spectral resolution of 

HyspIRI can resolve details that cannot be resolved by multispectral sensors — details 

such as the secondary peaks of absorption by phytoplankton (e.g., at 640 nm for chl-c1,2).   

 

In general, optimization methods derive a limited number of parameters, such as 

aph(443), ay(443) and bbp(443), as dictated by the number of wavelengths at which Rrs is 

available. Access to hyperspectral information would increase the number of retrievable 

parameters (e.g., slope of spectral dependence of yellow substances) by exploiting 

different parts of the spectra depending on the parameter of interest. Using hyperspectral 

information, one can expect to distinguish between the contributions from detritus and 

yellow substances to the total absorption coefficient. ANN analyses would benefit from 

the supplementary information contained in hyperspectral data (over what is contained in 

multispectral data), resulting in a better characterization of the magnitude and shape of 

the total absorption coefficient, and consequently, a better decomposition of the total 

absorption signal into the individual components. For example, Schofield et al., (2004) 

showed that hyperspectral data of the total absorption coefficient could be de-convolved 

into absorptions by three groups of phytoplankton representative pigments (chl-a-c, 

phycobilin, and chl-a-b), yellow substances and detritus. Their method assumed 

predetermined spectral shapes for the absorption by the three phytoplankton populations, 

and allowed some variation in the spectral slopes of absorptions by gelbstoff and detritus. 

An optimization scheme was used to derive the contribution of each component to the 

total absorption by minimizing the squared difference between the reconstructed spectra 

and the measured spectra. This type of approach, ideally suited for hyperspectral data, 

helps infer valuable information about coastal ecosystem processes and the fate of 

biogeochemical components in the coastal shelf. 

Backscattering Coefficient 
Total backscattering coefficient is often described as the sum of the 

backscattering coefficients of pure seawater and particulates. The particulate 

backscattering includes backscattering by living (phytoplankton, viruses and bacteria) 

and non-living (mineral) particles. Although ignored in current algorithms, it has been 

shown that scattering, and therefore backscattering, by pure seawater is affected by water 

temperature and salinity (Zhang and Hu, 2010).  The presence of a thermal infrared 

sensor in addition to the VSWIR sensor would enable testing and possibly correcting for 

the effect of variations in the temperature and result in improved retrieval of the 

backscattering coefficient of pure seawater.  Two aspects of the particle backscattering 

coefficients provide useful information on the marine constituents: the magnitude and the 



 45 

spectral dependence, the former being related to the concentration of particles and the 

latter to the size distribution of the particles.  In open ocean waters, where phytoplankton 

is the main driver of the optical variability, a value of one for the slope of the spectral 

dependence (described as a power law) is commonly accepted.  In coastal areas, this 

assumption becomes invalid and the slope of the spectral dependence can vary from −1 to 

3 in extreme cases (Loisel et al., 2006; Martinez-Vicente et al., 2010).  Algorithms for 

retrieving backscattering coefficients (some algorithms retrieve both absorption and 

scattering coefficients) would gain in accuracy for the same reasons, as described earlier 

for the retrieval of the absorption coefficients.  Improved accuracy in the retrieval of the 

spectral slope of the backscattering coefficient would yield, in theory, improved 

information on particle size distribution (Loisel et al., 2006; Kostadinov et al., 2009), a 

key parameter for studying biogeochemical cycles.  The magnitude of the slope of the 

spectral dependence changes across the visible and NIR regions because of particulate 

absorption (Doxaran et al., 2009).  Using hyperspectral data, we can develop methods 

that would account for this change in the magnitude of the slope of the backscattering 

coefficient in the visible and near infrared regions. Doxaran et al., (2009) proposed a 

model based on hyperspectral measurements to account for absorption by particles in the 

near infrared region when retrieving the backscattering coefficient, which could only be 

applied to data collected by a hyperspectral sensor such as HyspIRI. 

Apparent Optical Properties 

Diffuse Attenuation Coefficient 
The diffuse attenuation coefficient (Kd) is typically calculated to estimate the 

penetration of downwelling light in the water column. This coefficient is important for 

studying biological processes and water turbidity. One of the earliest methods to derive 

the diffuse attenuation coefficient from remotely sensed data was based on a ratio of 

water-leaving radiances, developed by Austin and Petzold (1981). They showed that 

Kd(490) could be derived using a simple linear regression of the ratio of water-leaving 

radiances at two wavebands centered at 443 and 550 nm. Later, Mueller and Trees (1997) 

replaced the waveband at 443 nm with one at 490 nm and the waveband at 550 nm with 

one at 555 nm to improve the retrieval of Kd(490); their algorithm was selected to retrieve 

the standard Kd (490) product for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). 

The higher number of wavebands available with HyspIRI would give more opportunities 

to test different combinations of wavelengths, and undoubtedly improve the accuracy 

with which Kd(490) could be retrieved.  Moreover, a simple linear regression or a more 

complex formulation (Loisel et al., 2006) of band ratios against Kd(490), or algorithms 

based on more than two wavelengths (Fichot et al., 2008; Jamet et al., 2012), could be 

used to improve the retrieval of Kd (490) in coastal waters.  

 

Given the number of wavebands available on HyspIRI, the diffuse attenuation 

coefficients could also be derived at other wavelengths besides 490 nm using simple 

mathematical formulations. Fichot et al., (2008) proposed a method based on principal 

component analysis to derive Kd at 320, 340, 380, 412, 443, and 490 nm, using data from 

the multispectral bands of SeaWiFS. Similarly, Jamet et al., (2012) used an ANN-based 

algorithm to compute Kd(490) in coastal waters using multispectral remote sensing 

reflectance. The use of hyperspectral data would certainly improve the retrieval of the 
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diffuse attenuation coefficient for statistically based approaches, provided that the 

training dataset is large enough and encompasses a variety of optical environments, such 

as those encountered in coastal waters. The algorithm from Fichot et al., (2008) would 

certainly gain in accuracy from Rrs collected in the ultraviolet (UV) region (HyspIRI will 

collect radiances starting at 380 nm), as the primary goal for that algorithm is to derive Kd 

in the UV and short visible wavelengths. Applications that depend on photochemistry 

(e.g., photodegradation of yellow substances) would benefit significantly from the 

measurements in the UV region. 

 

A limitation of empirical or semi-empirical algorithms is that they omit or ignore 

the impact of sun elevation on the retrieval of Kd. Kd is an apparent optical property that 

can vary by ~30% between when the sun is at the zenith and when it is 60° off zenith. 

Consequently, empirical band ratio algorithms overestimate Kd when the sun is close to 

the zenith and underestimate Kd when the sun is close to the horizon. The semi-analytical 

approach based on IOPs (Lee et al., 2005) overcomes this limitation by explicitly 

including the solar angle in the calculation of Kd, and it is found that this algorithm works 

fine for both oceanic and coastal waters (Zhao et al., 2013; Cunningham et al., 2013). In 

particular, this algorithm is applicable to both multispectral and hyperspectral data, which 

would be extremely useful for a HyspIRI-type sensor. 

 

In summary, irrespective of the method used (i.e., simple regression or advanced 

statistics), the use of hyperspectral data would allow the derivation of the diffuse 

attenuation coefficient with better accuracy than what is achievable using multispectral 

data. 

Optically Active Constituents  

Colored Dissolved Organic Matter (CDOM) 
In coastal waters that receive river runoff, colored dissolved organic matter 

(CDOM) or Gelbstoff, can represent a large fraction of the organic material present in the 

water column. CDOM plays an important role in the biogeochemical cycles within the 

ecosystem through re-mineralization by photochemistry, and by altering the light 

available for photosynthesis by phytoplankton and the subsequent biological production. 

With a high spatial resolution, HyspIRI would enable an accurate mapping of coastal 

waters that are under the influence of CDOM. The hyperspectral information would make 

it possible to test new multi-band algorithms and improve upon existing methods. 

 

A number of empirical, analytical and semi-analytical algorithms have been 

developed to retrieve CDOM concentration from remotely sensed data. Band ratios, such 

as Rrs(443)/Rrs(510) (D’Sa and Miller 2003), Rrs(490)/Rrs(555) (Mannino et al., 2008), 

Rrs(510)/Rrs(670) (Del Castillo and Miller, 2008), and Rrs(570)/Rrs(655) (Ficek et al., 

2011), are the most common type of empirical algorithm. Morel and Gentili (2009) used 

the relationship between the reflectance ratios Rrs(412)/Rrs(443) and Rrs(490)/Rrs(555) to 

isolate the effects of CDOM on measured reflectance, and subsequently retrieve the 

concentration of CDOM. Bélanger et al., (2008) used a polynomial expression to derive 

the ratio of CDOM absorption to the total absorption at 412 nm as a function of Rrs(555), 

Rrs(412)/Rrs(555) and Rrs(490)/Rrs(555). These band ratios are based on the spectral 
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channels of multispectral sensors such as MODIS and SeaWiFS, and were mostly 

developed for Case-I, open ocean waters. They generally perform poorly in optically 

complex coastal waters because of overlapping absorptions by chl-a and CDOM and the 

difficulty in separating their effects at the blue wavelengths used in the band ratios. The 

use of HyspIRI’s narrow bands in the short wavelengths (starting from 380 nm) will 

enable better separation of the optical effects of chl-a and CDOM, which absorbs UV 

light. It also provides more options for band combinations to use in empirical and semi-

empirical algorithms. 

 

The semi-analytical algorithm QAA retrieves the combined absorption of CDOM 

and detritus, i.e., adg. Using above-water hyperspectral reflectance measured using a field 

spectrometer, Zhu et al., (2011) developed an enhanced version of QAA, called QAA-E, 

which can separate the absorption coefficient of CDOM from adg by using the 

relationship between the absorption coefficient of either non-algal particles or total 

particles, and the particulate back-scattering coefficient. Zhu and Yu (2013) further 

improved QAA-E by using hyperspectral data from Hyperion to optimize essential 

parameters and functions used in QAA for turbid coastal waters. Zhu and Yu (2013) were 

limited by their inability to use Rrs(410) from Hyperion, because of the low SNR of 

Hyperion, and the consequent difficulty in calibrating the spectral channel centered at 

410 nm.  HyspIRI, with its high SNR, will not have such limitation.  

 

HyspIRI would also improve the retrieval of the absorption coefficient of CDOM 

using spectral inversion schemes. Algorithms such as the Garver-Siegel-Maritorena 

(GSM) model, which in its original version uses six wavelengths, would theoretically 

yield more accurate results when applied to 30 or more wavelengths. Fichot et al., (2013) 

showed that the concentration of terrigenous dissolved organic matter (tDOM) could be 

unambiguously derived from the slope of their absorption spectra between 275 and 295 

nm (inferred from reflectances at longer wavelengths), which was extrapolated from 

MODIS reflectance in the visible region. Their method would benefit from the use of 

hyperspectral data because an increase in the number of available wavelengths could 

strengthen the underlying spectral relationships on which their method is based. 
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Suspended Matter 
Suspended Particulate Matter (SPM) or Total Suspended Matter (TSM) is a 

critical parameter for studying water quality, coastal erosion, availability of light to 

submerged aquatic vegetation and transport of sediments and pollutants in water bodies 

(e.g., Bergamaschi et al., 2012). The nature and concentration of TSM in water are highly 

related to the bulk optical properties of the water (e.g., Chen et al., 1991; Astoreca et al., 

2012). Phytoplankton may form a significant fraction of TSM. Together with inorganic 

particles, they play a significant role in coastal waters. Approaches based on the 

relationships between IOPs and TSM would benefit from the use of hyperspectral data. 

First, we can expect the accuracy of the retrieved TSM to increase if the IOPs are 

retrieved with better accuracy. Numerous studies (Doxaran et al., 2009, 2012; Ritchie et 

al., 1976; Sterckx et al., 2007) have demonstrated the usefulness of near infrared and 

infrared bands to assess TSM concentration in turbid coastal waters, estuaries and rivers, 

as long as spatial resolution criteria are sufficiently met. For example, using hyperspectral 

data from the Advance Hyperspectral Sensor (AHS), Sterckx et al., (2007) showed that 

TSM was related to the logarithm-linear relationship of the difference between the 

reflectances at 833 and 1004 nm (r2 = 0.83; RMSE = 15.53 mg/L) for TSM 

concentrations up to 350 mg/L. Their approach used the insensitivity of the band at 1004 

nm to TSM concentration to remove contaminations from cirrus clouds and adjacency 

effects. Doxaran et al., (2012) also found a significant relationship between TSM and the 

ratio of Rrs(780) to Rrs(560). Linear regression of the derived TSM concentration against 

the measured TSM concentration, showed an r2 of 0.98 with a slope of 0.94, and an 

RMSE of 6.1 mg/L. These two examples of simple algorithms illustrate the need for 

hyperspectral observations when dealing with turbid waters. The visible part of the 

spectrum can be exploited for moderate-to-high levels of TSM (less than 50 mg/m3). 

However, as the concentration of TSM increases, reflectance in the near infrared and 

infrared bands are necessary to obtain reliable retrievals of the TSM concentration. 

HyspIRI would be a valuable asset for retrieving TSM concentration in turbid and very 

turbid waters, and would allow testing of different combinations of reflectances in the 

visible and near infrared regions to not only estimate the concentration of TSM, but also 

remove adverse environmental effects on remotely sensed data, such as adjacency effects, 

contamination from high altitude clouds and sun glint. 

Chlorophyll-a Retrieval 
The concentration of chl-a in water is a strong indicator of the trophic status of a 

water body (Falkowski and Raven, 1997; Schalles et al., 1998). Continuous monitoring 

of the biophysical status of a water body requires regular estimation of its primary 

productivity and phytoplankton biomass, usually indicated in the form of chl-a 

concentration. With its ubiquity in surface waters and ease of measurement in a 

laboratory setting, chl-a concentration is a convenient and reliable indicator of water 

quality, and is used routinely for monitoring marine and lacustrine waters. Remote 

sensing of ocean color for water quality analysis has been historically focused on 

estimating chl-a concentration in open ocean waters (IOCCG, 1999). Various algorithms 

have been developed for estimating chl-a concentration in open ocean, coastal, estuarine 

and inland waters using remotely sensed data. In the open ocean, phytoplankton 

dominates the optical properties of water, and algorithms based on simple ratios of 

reflectance in the blue and green spectral regions have been commonly used to retrieve 
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accurate estimates of chl-a concentration from satellite data (Gordon et al., 1983; 

O’Reilly et al., 1998). In most inland, estuarine and coastal waters, however, CDOM and 

SPM occur in high abundance besides phytoplankton, resulting in complex optical 

properties. Often, the bottom also contributes to water-leaving radiance from shallow 

coastal waters. These conditions render the simple blue-green algorithms unreliable for 

obtaining accurate estimates of chl-a concentration in optically complex coastal waters. 

For such waters, algorithms based on reflectances in the red and near-infrared (NIR) 

regions (Gitelson 1992; Dall'Olmo and Gitelson 2005) are preferred, due to the decreased 

effects of CDOM and SPM at these spectral regions. 

 

Matthews (2011) and Odermatt et al., (2012) have provided reviews of many 

recently developed chl-a algorithms. Most of the algorithms were developed for 

application to multispectral data, and have produced chl-a estimates with varying degrees 

of accuracy for open ocean, coastal, estuarine and inland waters, limited primarily by the 

inability to resolve from multispectral data the complex, overlapping spectral features 

from various constituents in turbid productive waters. The hyperspectral data from 

HyspIRI would enable the resolution of fine spectral features due to various 

phytoplankton pigments in addition to chl-a, leading to more accurate estimates of chl-a 

concentration, and assisting in understanding the composition of the phytoplankton 

community in inland, estuarine and coastal waters. 

 

The two-band NIR-red model (Gitelson, 1992), 
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and the three-band NIR model (Dall'Olmo and Gitelson, 2005), 
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where Rλ is the remote sensing reflectance at the spectral channel centered at λ nm, have 

been shown to yield accurate estimates of chl-a concentration in optically deep inland 

and coastal waters in North America, Asia and Europe (Gilerson et al., 2010; Gitelson et 

al., 2011; Gurlin et al., 2011; Moses et al., 2012a), with the spectral band positions of the 

models fixed at MERIS’ spectral channels centered at 665 nm, 708 nm, and 753 nm. 

These MERIS-based NIR-red algorithms have yielded chl-a estimates with consistently 

high accuracies on the order of 90% or more for waters with a wide range of chl-a 

concentrations.   

 

The hyperspectral data from HyspIRI would provide increased flexibility in the 

choice of spectral bands for these models, and could potentially lead to different band 

combinations. Such an adaptive algorithm could provide more accurate estimates of chl-a 

concentration than what has been achieved using the spectral bands of MERIS. For 

instance, MERIS does not have a spectral band centered between 708 nm and 753 nm; 

therefore, λ3 for the three-band model has to be set at 753 nm. However, the spectral band 

centered at 753 nm is susceptible to significant effects due to instrument noise and 
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imperfect atmospheric correction, which significantly affects the performance of the 

three-band model (Moses et al., 2009b). The hyperspectral data from HyspIRI would 

enable the use of a shorter wavelength for λ3, which could improve the performance of 

the three-band NIR-red model.  

 

HyspIRI’s hyperspectral data would also enable the use of algorithms based on 

sophisticated, numerically driven approaches such as the Levenberg Marquardt 

multivariate optimization for estimating water quality parameters (Pozdyanok et al., 

2005; Moses et al., 2012b). This is a non-linear least squares approach that uses a 

forward model, such as Hydrolight, to generate modeled reflectance, and estimates 

biophysical parameters by iteratively minimizing a user-supplied cost function, such as 

the squared difference between the measured and modeled reflectances. In fact, this 

method can simultaneously retrieve multiple biophysical parameters besides chl-a 

concentration. A method such as this requires hyperspectral data with high SNR, such as 

what would be provided by HyspIRI, as it considers a broad spectral range, and relates 

reflectance features within the range to optically active constituents in water. Noisy data 

would cause the method to misinterpret noise features as actual spectral features, and 

produce inaccurate estimates of biophysical parameters. 

 

For optically shallow waters, algorithms such as those based on spectral inversion 

techniques (Lee et al., 1998, 1999) or Look-Up-Tables (Mobley et al., 2005) have been 

used to minimize the effect of reflectance from the bottom and retrieve the chl-a 

concentration in water. The use of hyperspectral data will help improve the isolation of 

contributions from the bottom, and lead to more accurate retrievals of chl-a concentration.  

 

Davis et al., (2007) used data from Hyperion and several airborne hyperspectral 

sensors to evaluate the spatial resolution required to study coastal waters, with a specific 

focus on detecting algal bloom patches. They concluded that a spatial resolution less than 

100 m is required to adequately capture the spatial dynamics of heterogeneous coastal 

waters. With a spatial resolution of 60 m, HyspIRI would be capable of adequately 

capturing spatial variability in coastal waters. HyspIRI’s temporal revisit cycle of several 

observations per week at latitudes higher than 60° for the visible and short wave infrared 

spectrometer, will help monitor algal blooms in inland, estuarine and coastal waters at 

those latitudes, but not at the equator where the revisit time is about 19 days. 
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Phytoplankton Functional Types (PFT) 
 The HyspIRI mission will provide the scientific community with hyperspectral 

observations that will lead to a more robust chl-a product, and the opportunity to detect 

various accessory pigments that can be utilized to identify biogeochemically important 

Phytoplankton Functional Types (PFT). Understanding the spatial and temporal 

distribution of PFTs will allow the scientific community to improve its knowledge of 

biologically mediated fluxes of 

elements that contribute to the 

carbon cycle (Falkowski et al., 

2004). Information on bio-

diversity provides a valuable 

quantitative database for 

structuring sophisticated pre-

dictive models that include 

taxonomic phytoplankton com-

munity information, such as 

size spectra, probability 

distributions of certain taxa and 

upper trophic level estimations, 

such as fisheries productivity 

(Chesson and Case, 1986; 

DeAngelis and Waterhouse, 

1987; Chase et al., 2013). 

Determining the spatial vari-

ability and concentrations of 

various PFTs is critical to 

improving primary productivity 

estimates and understanding 

the feedbacks of climate 

change (Moisan et al., 2011). 

Hyperspectral techniques, 

which can enhance the dis-

cernment of subtle features in 

hyperspectral data, could also 

enable the detection of marker 

pigments.  

 

To spectrally detect 

marker pigments, the total ab-

sorption is first retrieved from the measured reflectance using an algorithm (e.g., based 

on inversion of a water-column radiative transfer model), and then the total absorption is 

separated into absorption by individual endmembers. High-resolution reflectance spectra 

will facilitate the retrieval of total absorption at high resolution. This can lead to better 

discrimination between relative concentrations of photosynthetic and photo-protective 

pigments, which serve as taxonomic marker pigments, and provide a proxy for the 

physiological function of the phytoplankton community.  

Figure 2.4.1 – Weight-specific in vitro absorption 

spectra of various pigments, 𝑎𝑖
∗ 𝜆 , derived from 

measuring the absorption spectra of individual 

pigments in solvent and shifting the maxima of the 

spectra according to Bidigare et al., (1990). Data 

obtained courtesy of Annick Bricaud (See Bricaud et 

al., 2004).  Note, that only 14 of the total 18 pigments 

encountered in this study have pigment-specific 

relationships available from laboratory studies 

(Moisan et al., 2011). 
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Figure 2.4.1 shows the in vivo absorption spectra of the photo-protective and 

photosynthetic pigments in solution. The weight-specific absorption coefficients were 

derived by measuring the absorption spectra of individual pigments in solvent and 

shifting the maxima of the solvent according to the method described by Bidigare et al., 

(1990). The spectra on Figure 2.4.1 were generated using data published by Bricaud et al., 

(2004). Not all pigments shown are easily discernible, but certain key marker pigments 

(or groups of pigments) can be distinguished and used to identify functional types present 

in the water column. Chl-a, chl-b and chl-c are characterized by sharp absorption bands, 

whereas the carotenoids have a broader absorption spectrum. Carotenoids can be further 

divided into several photosynthetic pigments (fucoxanthin, peridinin, 19’-

hexanoyloxyfucoxanthin and 19’-butanoyloxyfucoxanthin), whose maximum absorption 

occurs around 490–500 nm, and non-photosynthetic pigments (zeaxanthin, diadino-

xanthin, alloxanthin, and β-carotene), which have two absorption peaks around 460 and 

500 nm. Methods based on phytoplankton absorption have been used successfully to 

obtain information using the unique spectral signatures of pigments, such as chl-b, chl-c, 

photosynthetic and nonphotosynthetic carotenoids (Hoepffner and Sathyendranath, 1993; 

Bricaud et al., 2007), and fucoxanthin (Chazottes et al., 2007). 

 

Historically, algorithm development for detecting PFTs has been based on IOPs 

and AOPs and their relationship to marker pigments for phytoplankton taxa or groups 

within a community. Development of algorithms for detecting PFTs in the coastal ocean 

has been a challenge due to the optical complexity caused by sediment re-suspension, 

coastal runoff and bottom reflectance. However, successful modeling of absorption has 

led to the development of mathematical approaches to estimate photo-protective and 

photosynthetic pigments that vary with cell size, carbon content, and pigment packaging 

effects (Balch et al. 1991; Subramanian et al. 1999). Recently, algorithms have been 

developed to distinguish phytoplankton groups such as Phaeocystis and diatoms 

(Sathyendranath et al., 2004; Moisan et al., 2011). A number of approaches based on 

phytoplankton absorption to retrieve pigment composition (e.g., Schofield et al., 2004; 

Whitmire et al., 2010) or phytoplankton size distribution e.g., (Devred et al., 2006, 2011; 

Ciotti et al., 2006; Hirata et al., 2008) would show great improvements when applied to 

HyspIRI data. Applications such as PHYSAT (PHYtoplankton groups from SATellites, 

Alvain et al., 2004) and PhytoDOAS (Phytoplankton Differential Optical Absorption 

Spectroscopy; Bracher et al., 2009; Sadeghi et al., 2012) use spectrally resolved 

reflectance to interpret changes in community structure, and reduce the noise due to the 

presence of yellow substances or suspended minerals, and are well suited for coastal 

observations. Lubac et al., (2008) demonstrated the advantage of using a hyperspectral 

sensor over a multispectral sensor to detect Phaeocystis globosa spp. in turbid coastal 

waters based on the second derivative of Rrs(λ). Millie et al., (1997) used fourth order 

spectral derivatives to quantitatively detect the red tide dinoflagellate Gymnodinium 

breve in the Sarasota Bay in Florida. Methods based on high-order spectral derivatives 

require hyperspectral data. 

 

Algorithms for detecting PFTs have also been developed based on the 

incorporation of ecological and geographic knowledge of ocean color, bio-optical 
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characteristics and remotely sensed physical parameters, such as Sea Surface 

Temperature (SST), Photosynthetically Active Radiation (PAR) and sun-induced 

fluorescence (Raitsos et al., 2008). The incorporation of ecological and geographical 

knowledge with ocean color, bio-optical characteristics and remotely sensed physical 

parameters is a powerful approach for capturing variability due to environmental 

conditions. For instance, it is known that some species, such as Alexandrium spp., require 

favorable environmental conditions to germinate (Anderson et al., 2012). The 

simultaneous measurements of visible (phytoplankton) and infrared (SST) radiation by 

HyspIRI will enable such an approach. 

Fluorescence 
 Sun-induced fluorescence by phytoplankton, modeled as a Gaussian curve 

centered around 683 nm, can be used to infer phytoplankton concentration (Behrenfeld et 

al., 2009; Gower et al., 1999; Huot et al., 2005, 2007). Approaches that use fluorescence 

to derive phytoplankton concentration have been promoted for ocean color applications 

in coastal areas, because the portion of the spectrum that they exploit is only moderately 

impacted by other marine constituents besides phytoplankton. Ocean color sensors like 

MERIS and MODIS carry specific wavebands to record the fluorescence emission 

embedded in the reflectance signal. The reflectance signal in the near infrared also carries 

information on the absorption and elastic scattering.  

 

A simple model to derive the magnitude of fluorescence, referred to as the 

Fluorescence Line Height (FLH), was developed to deduce the contribution from elastic 

scattering to the total reflectance signal. This approach is based on a reflectance baseline 

formed linearly between the reflectances at two wavelengths, where the fluorescence is 

negligible (e.g., 667 and 748 nm for MODIS; Abbott et al., 1999; 665 and 709 nm for 

MERIS), which is then subtracted from the total reflectance signal at the sensor’s 

“fluorescence” band (678 nm for MODIS and 681 nm for MERIS) to yield the FLH. For 

MERIS, the same approach was developed to take account of the shift in the reflectance 

peak to longer wavelengths for highly productive waters to derive a Maximum 

Chlorophyll Index (MCI, Gower et al., 2008). Blondeau-Patissier et al. (2014) used FLH, 

MCI, and chl-a concentration, estimated using a neural network algorithm to characterize 

algal bloom dynamics, and distinguish surface blooms dominated by chl-a from those 

due to cyanobacterium Trichodesmium spp. in the Great Barrier Reef and Van Diemen 

Gulf regions in Northern Australia. Although these approaches are relatively insensitive 

to perturbations of CDOM (Hu et al., 2005; McKee et al., 2007), FLH suffers from 

interference from particulate scattering in highly turbid waters (McKee et al., 2007). 

Therefore, more sophisticated approaches have been used to derive the fluorescence 

signal based on the radiative transfer theory (Huot et al., 2005). The use of hyperspectral 

data will allow for a better characterization of the fluorescence signature in the 

reflectance data, especially when choosing the baseline wavelengths and the peak 

wavelength. Mischaracterization of the baseline may lead to negative estimation of the 

FLH. Shifts in the location of the wavelength of peak reflectance will affect the ability of 

a multispectral sensor to accurately quantify the fluorescence signal. The availability of 

more bands could lead to more advanced schemes of inversion of the reflectance signal.  

 

In addition to providing information on chl-a concentration, FLH also provides a 
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powerful tool to assess the physiological state of the phytoplankton community 

(Falkowski and Kiefer, 2005; Behrenfeld et al., 2009). FLH is an excellent indicator of 

factors that control phytoplankton primary productivity, such as pigment concentration, 

non-photochemical quenching, and pigment packaging effects. Both laboratory and field 

studies have demonstrated that these physiological indicators change on rapid time scales 

and represent new avenues for understanding primary productivity and carbon flow 

globally (Cleveland et al., 1987; Moisan et al., 1998). The fluorescence quantum yield 

(Φf) may vary by an order of magnitude in marine environments, especially in the 

coastal ocean, due to variations in the taxonomic composition of phytoplankton, nutrient 

availability, temperature and light (Berhrenfeld et al., 2009). Changes in Φf and FLH 

may emphasize linkages between phytoplankton physiology and environmental 

variability, which was a key point in the 2007 Decadal Survey. With accurate 

characterization of FLH in the coastal regions, HyspIRI will provide unprecedented 

coverage of changing phytoplankton community response to coastal issues, such as 

eutrophication, ecosystem health and changing nutrient ratios (Westberry and Siegel, 

2003). 

Coastal Fronts and Plumes 

The combination of hyperspectral and thermal imagery provides an opportunity to 

improve the detection and mapping of coastal fronts and plumes at high spatial resolution, 

leading to a unique data product with useful applications. Coastal plumes produced by the 

continuous discharge of rivers and estuaries are common features in shelf and coastal 

waters, and contain harmful runoff from land. They influence various aspects of the 

coastal environment, from circulation patterns to biogeochemical processes, causing 

eutrophication, turbidity and spread of harmful pollutants (Mestres et al., 2007; Riegl et 

al., 2009). The complex behavior of coastal plumes is determined by various factors, 

including river discharge characteristics, topography/bathymetry and wind and tidal 

effects (Stumpf et al., 1993; Wiseman and Garvin, 1995; Blanton et al., 1997). Estuarine 

and ocean fronts result when denser water underrides lighter water, giving rise to an 

inclined interface and a strong convergence at the surface, which can concentrate 

phytoplankton and pollutants such as oil slicks. 

 

To detect and map coastal fronts and plumes, remote sensors exploit differences 

in their turbidity, color, temperature and salinity from the background water (Muller-

Karger et al., 1988; Odriozola et al., 2007). Due to their high turbidity and color 

gradients, most estuarine fronts and coastal plumes can be detected by satellites, such as 

SeaWiFS, MODIS, and Landsat TM (Purkis and Klemas, 2011). The lower salinity and 

temperature of some shelf features, such as the Amazon, Orinoco, Mississippi, La Plata 

River and many other river plumes, have been mapped using various ocean color sensors. 

Open ocean fronts, such as the Iceland-Faroes front, often have strong temperature 

gradients, while coastal upwelling fronts can be detected by their colder temperatures and 

colors due to high chl-a concentration. With its relatively high spatial resolution, 

hyperspectral VSWIR channels and TIR channels, HyspIRI will improve our ability to 

identify and analyze coastal plumes and oceanic fronts. Combining HyspIRI’s high-

resolution data with Synthetic Aperture Radar (SAR) and multispectral imagery from 

other satellites should provide the temporal and spatial resolution required for imaging 
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the location, extent, composition and dynamics of coastal plumes, fronts and oil slicks. 

 

The high spectral resolution of HyspIRI will enable us to estimate the 

concentrations of biogeochemical constituents in plumes and fronts (Chang et al., 2002; 

Brando and Dekker, 2003). The biogeochemical constituents vary according to their 

origin, which can be river runoff or wind-induced upwelling. Schroeder et al., (2012) 

used an enhanced version of the Linear Matrix Inversion algorithm (Hoge and Lyon, 

1996) to map fresh water plumes in the Great Barrier Reef lagoon using MODIS images. 

They retrieved chl-a, non-algal particulate matter, and CDOM simultaneously from 

MODIS reflectances, and used CDOM as a surrogate for salinity to map the extent of 

freshwater. As stated previously, hyperspectral data will greatly improve the performance 

of such spectral inversion techniques.  HyspIRI data can also help us to analyze water 

quality, nutrient loads and changes in fisheries due to natural and human-induced stress 

on marine ecosystems at fine spatial scales. 

Challenges 
There are a few aspects that should be considered regarding the characteristics of 

the HyspIRI mission and its applicability to remote retrievals of the water column 

parameters discussed in this section. Sun glint presents a problem in the tropics and 

subtropics that has to be addressed to exploit the full potential of HyspIRI. Examination 

of MODIS scenes indicated that a 4° westward tilt at an 11:00 a.m. ascending equatorial 

crossing, could result in a maximum glint signal that is between 20% and 100% of the 

magnitude of the surface reflectance at 488 nm (Hochberg et al., 2011). In operational 

processing of ocean color products, sun glint is often flagged by applying thresholds for 

water-leaving radiance. Such flags can be used to mask a large portion of an image. For 

HyspIRI, this would result in a substantial loss of opportunities to observe the water 

column at low latitudes. However, new algorithms, such as POLYMER (Steinmetz et al., 

2011), which processes the atmospheric and oceanic signals simultaneously through 

optimization schemes, have proven efficient at removing sun glint. Given HyspIRI’s high 

spectral resolution and spectral coverage extending into the SWIR region, improved 

performances of algorithms such as POLYMER is expected, provided that the initial 

conditions (i.e., spectral dependence of marine and atmospheric components) have been 

properly addressed. Figure 2.4.2 illustrates the correction of sun glint by the POLYMER 

algorithm. 
 

The 19-day equatorial revisit cycle (shorter at higher latitudes) of the HyspIRI 

mission is inadequate to monitor or map short-term events, such as the development and 

movement of harmful algal blooms or enhanced production following a storm event 

(Babin et al., 2004). Nevertheless, the revisit time would be adequate to map coastal in-

water constituents and their optical properties for long term monitoring (on seasonal or 

annual scales). Detailed snapshots of inland, estuarine and coastal waters, though 

acquired infrequently, can be used in conjunction with data from multispectral sensors 

that provide almost daily global coverage to provide a better understanding of the 

temporal evolution of aquatic ecosystem processes. Moreover, as described in previous 

sections, the detailed snapshots can also lead to the development of improved techniques 

for retrieving bio-optical products. The primary general application of HyspIRI would be 

to look at persistent, long-term water quality issues and relate them to spatial processes 
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(e.g., nutrient or sediment discharge hotspots along the coasts). HyspIRI might also 

provide information on seasonal succession of species in estuaries and inland waters, or 

snapshots of responses to episodic events. At high latitudes, the revisit time reduces to 

only a few days, thereby improving the temporal resolution greatly. Provided the signal 

strength is sufficiently strong, HyspIRI might be able to coarsely observe phytoplankton 

bloom dynamics in polar systems. 

 

The final accuracy of the biophysical products retrieved from satellite data 

depends on a number of factors, such as the ability of the particular bio-optical model to 

correctly relate variations in the biophysical parameter of interest to the measured 

reflectance without being sensitive to effects caused by variations in other optically active 

constituents in the water, the accuracy of atmospheric correction, the reliability of 

radiometric calibration and the inherent noise in the sensor. Regardless of the 

improvements that can be achieved in the rest of the factors, the total noise in the sensor, 

as commonly indicated by the SNR, sets a constraint on the minimum error that would be 

invariably present in the retrieved biophysical product. A high SNR is essential for the 

ability to detect fine spectral features of low magnitude, as would be required to 

discriminate among PFTs, or estimate the absorption coefficient of phytoplankton. Fisher 

(1985) has shown that the number of independent quantities retrieved from remote 

sensing reflectance would significantly decrease when the noise increases. Moreover, 

spectral inversion techniques that rely on accurate absolute reflectance require high SNR. 
 

The projected SNR of HyspIRI (Gao, 2010) is better than that of Hyperion (Hu et 

al., 2012a), comparable to that of HICO (Moses et al., 2012b; Lucke et al., 2011), and is 

considered reasonably adequate for accurately retrieving hyperspectral reflectance from 

Figure 2.4.3 – MERIS false color image acquired off the coast of Portugal on 21 June 

2005 (left), and chl-a concentration derived by the POLYMER algorithm (right). The 

algorithm was able to retrieve chl-a concentration in the presence of thin clouds and sun 

glint (Courtesy of F. Steinmetz). 
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the water surface, and consequently, the aquatic biophysical parameters described here. 

Finally, hyperspectral algorithms will require a large in situ dataset for development and 

validation activities, such as the SeaWiFS Bio-optical Archive and Storage System 

(SeaBASS) and the NASA bio-Optical Marine Algorithm Dataset (NOMAD) (Werdell et 

al., 2002, 2005). The aggregation of such a dataset would require tremendous effort from 

the ocean color/hyperspectral community, especially in coastal areas, which are known to 

be under-documented even for multispectral applications. In addition, to derive PFTs, a 

library of pigments and spectra of specific IOPs will be required to validate the existing 

algorithms (e.g., to provide endmembers for unmixing the absorption spectra), and 

explore potential candidates for identification. An effort is underway to collect data from 

the community, and develop a spectral library to support the HyspIRI mission. However, 

further plans to expand this effort will need to be put in place within the next few years to 

assure that sufficient specific absorption spectra are collected and processed for use with 

algorithms, perhaps in preparation for a broader HyspIRI validation program. 

Mission Relevance 
Currently, there are no civilian spaceborne hyperspectral instruments designed to 

provide continuous, regular global coverage of coastal and inland waters at high spatial 

and spectral resolution. However, the upcoming HyspIRI mission will offer these 

capabilities. In this section, we have provided a brief summary of the characteristics of 

HyspIRI, and discussed the valuable benefits from the use of HyspIRI for retrieving 

biophysical parameters of the coastal water column. HyspIRI data can be used to develop 

new techniques or improve existing techniques to retrieve aquatic data products at a level 

of spatial and spectral detail and accuracy that is not achievable with multispectral data. 

The increased spectral resolution in the visible region will allow for more accurate 

retrievals for water quality assessment using data products, such as the diffuse attenuation 

coefficient (an indicator of turbidity), chl-a concentration (an indicator of eutrophication), 

primary production (an indicator of the functions of an ecosystem), backscattering 

coefficient and TSM concentration (indicators of the nature and size distribution of 

particles and sediment transport), and PFTs (indicators of harmful algal blooms and the 

state of the ecosystem). HyspIRI’s hyperspectral data with high SNR would be well 

suited for sophisticated retrieval algorithms, such as those based on spectral inversion, 

spectral derivatives, ANN, Look-Up Tables (LUT), and the Levenberg-Marquardt non-

linear least squares minimization method, which can be used to retrieve multiple 

biophysical parameters of the water column simultaneously. 

 

As the increased complexity of the ecosystem is resolved, the HyspIRI mission 

will provide highly resolved spatial measurements of the Carbon Cycle as it relates to 

seasonal, annual and decadal time scales. A few studies have already illustrated the use of 

spaceborne hyperspectral data for studying the coastal aquatic environment. Hyperion 

initially showed potential for coastal aquatic studies (Nikolakopoulos, 2006). However, 

problems due to the radiometric instability of the sensor and low SNR have made 

Hyperion unreliable for accurate, quantitative analysis of aquatic ecosystems (NRC, 

2007). HICO has been shown to provide accurate estimates of the concentrations of 

optically active components in coastal waters (Gitelson et al., 2011; Braga et al., 2013; 

Moses et al., 2014). HICO is a demonstration mission on the International Space Station 

(ISS), with on-demand image acquisition. The orbital constraints on the ISS platform 
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prevent HICO from providing either regular or global coverage. Except for HICO, there 

is no spaceborne hyperspectral sensor designed specifically for coastal waters currently in 

operation or scheduled to be launched in the near future. With an SNR that is comparable 

to that of HICO’s, HyspIRI’s regular high-resolution snapshots can be used for seasonal 

monitoring of global coastal waters.  

2.5 Bathymetry 

Science Questions Addressed 
 Bathymetry derived from HyspIRI data will help answer the following science 

questions: 

VQ4. How are disturbance regimes changing and how do these changes affect the 

ecosystem processes that support life on Earth? 

CQ1. How do inland, coastal, and open ocean aquatic ecosystems change due to local and 

regional thermal climate, land-use change, and other factors? 

Candidate Product or Application 
 Knowledge of ocean bathymetry is important for both scientific studies, as well as 

management plannings. Because of the enormously large area of the global oceans and 

limited coverage provided by ship surveys, bathymetric data in fine detail are still lacking 

for many parts of the oceans. One approach to fill this data void is through the 

measurement of water color, and then derive the depth of sea bottom through analyzing 

the spectral shape of this water color, a scheme that was pioneered by Polcyn et al., about 

40 years ago (Polcyn et al., 1970). Basically, it takes advantage of the fact that photons 

hitting the shallow sea bottom and reflecting back to the surface modify the appearance 

of ocean color. To reliably retrieve bottom properties from this spectral analysis requires 

adequate signal from the bottom, or the water column has to be optically shallow. In 

other words, the water needs to be transparent enough and the sea bottom cannot be too 

deep. However, because both water and bottom properties vary spatially, retrieval of 

bottom depth from the analysis of this spectrum is not straightforward. 

Methods 
 Earlier methods to estimate bathymetry from ocean color were limited to 

approaches (Polcyn et al., 1970; Lyzenga, 1981; Philpot, 1989) that require a few known 

depths to develop an empirical relationship, which then allows researchers to convert 

multiband color images to a bathymetric map. The resulting empirical relationship are 

generally sensor and site specific (Dierssen et al., 2003; Stumpf et al., 2003) and not 

transferable to other images or areas. Further, the approach is not applicable for regions 

difficult to reach, due to lack of in situ calibration data. 

 

 To overcome such a limitation, physics-based approaches have been developed in 

the past decade (Lee et al., 1999; Klonowski et al., 2007; Brando et al., 2009; Dekker et 

al., 2011). Basically, a model based on radiative transfer theory is developed to 

analytically describe the spectral variation of shallow-water color, normally measured by 

its remote-sensing reflectance (Rrs, sr-1), the ratio of water-leaving radiance to 

downwelling irradiance incident on the sea surface. Unlike the empirical approaches 
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focusing on the retrieval of depth from water color (Lyzenga, 1981; Philpot, 1989; 

Dierssen et al., 2003; Stumpf et al., 2003), such analytical approaches retrieve both water 

and bottom properties simultaneously. The following is a brief summary of such an 

analytical inversion system. 

 

 For optically shallow waters, Rrs not only depends on the absorption and 

scattering properties of dissolved and suspended materials in the water column, but also 

on the depth and reflectivity of the bottom. Rrs is also influenced by contributions from 

inelastic scattering, such as fluorescence and Raman emission (Marshall and Smith, 

1990; Lee et al., 1998), but they are generally negligible for optically shallow waters. The 

spectral Rrs can be conceptually summarized as 

 

 Rrs() = f[a(), bb(), (), H],      (6) 

 

where a() is the absorption coefficient, bb() is the backscattering coefficient, () is the 

benthic spectral reflectance, and H is the bottom depth. Explicit description or 

approximation of Rrs was further developed through numerical simulations (Lee et al., 

1998; Albert and Mobley, 2003). 

 

 Equation 6 can be applied to Rrs(λ) measured by a sensor with n spectral bands, 

creating n equations, with H being constant with λ.  The other four variables, however, 

are wavelength dependent, thus the variable H cannot not be generally analytically 

determined. In order to retrieve H from Rrs with confidence, spectral models regarding 

the optical properties and bottom reflectivity have to be established. 

 

 Lee et al., (1999) reduced the three spectra (a(), bb(), and ()) to four scalar 

variables through bio-optically modeling and by employing two contrast bottom classes 

(grass and sand), and the solution is achieved by minimizing the difference between the 

modeled and measured Rrs spectra, or the so-called spectral optimization or minimization. 

This scheme was modified recently by Adler-Golden et al., (2003), with constant water 

optical properties within a scene, three substratum types for coral reef environments 

(Goodman and Ustin, 2007; Klonowski et al., 2007) and determination of optical and 

bottom spectral shapes in the solution phase (Brando et al., 2012). 
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Figure 2.5.1 – Comparison of Bathymetry from Satellite Hyperspectral Data and 

Airborne LIDAR (from Lee et al., 2007b). 
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 An approach that is in principle the same as the above is the look-up-table scheme 

(Mobley et al., 2005), where a library of spectra corresponding to different combinations 

of depth, bottom type and water properties was developed (Mobley et al., 2005; Louchard 

et al., 2003; Lesser and Mobley, 2007), and solutions were achieved by finding the Rrs 

spectrum that best matches the measured Rrs spectrum. 

 

 Figure 2.5.1 demonstrates that using hyperspectral data from the Hyperion 

instrument, bathymetric measurements can be made that are comparable to relatively 

accurate airborne LIDAR data.  HyspIRI is expected to have better radiometric 

calibration and SNR compared to Hyperion and improved results are expected. 

2.6 Benthic Cover Classification and Mapping 
 

 Submerged aquatic habitats present a particularly challenging environment for 

remote sensing, owing in large part to the confounding effects of the overlying water 

column and water surface. In this situation, it is the benthic surface (e.g., the substrate 

type and habitat composition) that is the primary subject of interest, and any analysis of 

water properties and bathymetry, as discussed previously, is instead shifted into a 

supporting role. The challenge, and thereby the objective, of this analysis is thus to 

differentiate the contributions of the benthos, water column and air-water interface in 

order to ultimately resolve habitat and substrate characteristics. Given the complexity of 

light interactions in this environment, even in tropical locations with exceptionally clear 

water, it has been shown that imaging spectroscopy is more robust, and provides greater 

accuracy than what can typically be achieved using traditional multispectral sensors 

(Botha et al., 2013). With that in mind, we discuss the relevant application areas and 

associated capabilities that HyspIRI addresses, with respect to the field of benthic cover 

classification and mapping. Discussion is apportioned into two main categories, biotic 

and abiotic, followed by a summary of the relevant limitations and applications. 

 

 Amongst the various submerged biotic habitat types, coral reefs have received the 

most attention from the remote sensing community, and as discussed below, there is 

significant ecological importance and sound physical reasoning for this attention. 

However, this is not the only habitat type where large-scale assessment and monitoring 

efforts benefit from imaging spectroscopy capabilities. Other relevant habitats include 

submerged aquatic vegetation, mollusk beds and benthic algae, which each also have 

their own unique environmental, economic and societal importance.  

Science Questions Addressed 
 HyspIRI data can be used to detect and delineate a variety of benthic cover classes, 

which will help answer the following science questions. 

VQ1. What is the global spatial pattern of ecosystem and diversity distributions and how 

do ecosystems differ in their composition or biodiversity? 

VQ3. How are the biogeochemical cycles that sustain life on Earth being 

altered/disrupted by natural and human-induced environmental change?  How do these 
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changes affect the composition and health of ecosystems and what are the feedbacks with 

other components of the Earth system? 

VQ6. What are the land surface soil/rock, snow/ice and shallow-water benthic 

compositions? 

CQ1. How do inland, coastal, and open ocean aquatic ecosystems change due to local and 

regional thermal climate, land-use change, and other factors? 

Candidate Products or Applications – biotic cover maps 

Coral Reefs 
 Coral reefs are complex marine ecosystems distributed throughout the world’s 

tropical ocean in territorial waters of more than 100 countries (Salvat, 1992). Reefs 

directly occupy an estimated area of 250,000–600,000 km2 (Smith, 1978; Kleypas, 1997; 

Spalding and Grenfell, 1997). These values correspond approximately to 0.05–0.15% of 

the global ocean area, respectively, and about 5–15% of the shallow sea areas within 0–

30 m depth.  Differences between areal estimates reflect the use of different estimation 

methodologies, as well as variations in reef definition (Buddemeier and Smith, 1999). 

 

 Coral reefs have existed over millennia as geologic features, but their construction 

is biogenic, composed of the skeletons of hermatypic (reef-building) organisms (Achituv 

and Dubinsky, 1990). The most conspicuous organisms in reef formation are 

scleractinian corals, which have high calcification rates, and produce most of the calcium 

carbonate (aragonite) that makes up the reef framework.  Other important reef calcifiers 

are various calcareous algae: crustose red coralline algae cement the softer, more porous 

coral skeletons, creating a more wave-resistant structure, and the calcareous green alga, 

Halimeda, can account for large fractions (up to 80%) of reef sand deposits (Berner 

1990).  The association of these organisms produces a living structure that grows and 

maintains itself near sea level. 

 

 Because coral and algae are responsible for reef construction and maintenance, 

their environmental limits determine the distribution of reefs (Kleypas et al., 1999).  The 

abiotic parameters most affecting the distributions of coral and algae are temperature, 

light, salinity, nutrients, carbonate saturation state and water motion (Smith and 

Buddemeier, 1992), while the most important biotic parameter is grazing (Berner 1990).  

The specific influences of these parameters on reef-building organisms are interconnected 

and complex, and they are a major focus of ongoing reef research. 

 

 Major coral reef ecosystem processes include those linking the physical 

environment to the reef community (Hatcher, 1997).  Reefs are noted for their high rates 

of ecosystem gross primary production and respiration (Odum and Odum, 1955; Kinsey, 

1985).  At the ecosystem spatial scale and at seasonal time scales, respiration generally 

equals production so that ecosystem net production is near zero (Kinsey, 1983; Kinsey, 

1985).  The same is not necessarily true for shorter time periods (days to weeks), smaller 

sub-reef areas, or even some entire reef systems (Falter et al., 2001; Falter et al., 2011). 
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 In addition to the reef-building organisms, coral reefs host a diversity of life that 

rivals that of tropical rain forests, with the number of species potentially reaching the 

millions (Small et al., 1998; Bellwood and Hughes, 2001). This biodiversity and the 

general abundance of life on reefs, provide a vital resource for human populations around 

the world, supporting, among other activities, artisanal, commercial and sport fisheries 

and ecotourism (Moberg and Folke, 1999).  It has been estimated that direct and indirect 

use of reefs contributes more than US$1 billion annually to the economy of the 

Philippines (White et al., 2000), and nearly US$7 billion USD annually to the economy 

of four southeastern Florida counties (Johns et al., 2001).  While the accuracies of these 

dollar amounts are debatable, it is certain that coral reefs and their biodiversity are 

important to the cultural and economic lives of millions of people around the world. 

 

 It is incontrovertibly clear that many reefs are in various stages of decline, often 

attributed to local and regional anthropogenic factors.  Hundreds (if not thousands) of 

research papers have documented human impacts to reefs at the local scale.  These are 

well summarized in several review papers and volumes (e.g., Salvat, 1992; Smith and 

Buddemeier, 1992; Ginsburg, 1994; Connell, 1997; Carpenter et al. 2008).  Local and 

regional human impacts include, but are certainly not limited to, destructive fishing 

practices, mining calcium carbonate, anchor damage, oil spills and land-use practices 

leading to terrestrial sediment deposition, with subsequent resuspension that decreases 

water transparency vital for reef photosynthesis.  [Contrary to popular belief, human-

sourced nutrient loading is not a major impact on coral reefs.  See Szmant (2002) and 

Atkinson (2011).]  The common result of all these impacts has been an ecological shift 

from coral- to algal-dominated reef benthic community structures.  Accompanying this 

shift has been a similar decline in diversity of reef flora and fauna (Pandolfi et al., 2003; 

Jones et al., 2004). 

 

 Already stressed by human activities at local and regional scales, reef ecosystems 

are under increased threat by global climate change (Smith and Buddemeier, 1992; 

Hoegh-Guldberg et al., 2007; IPCC, 2007).  The convolved influences of rising sea 

surface temperature and increasing ocean acidification are predicted to imminently cause 

a global shift in reef benthic community structure from coral-rich to coral-poor, with an 

accompanying loss of ecosystem services and economic value. However, current 

assessments of global reef conditions are based on simple extrapolation from the very 

sparse available data (e.g., Wilkinson, 2008) gathered using traditional methods: 

quadrats, transects, or semi-quantitative towed-diver surveys.  Remote sensing is the only 

approach that can provide a truly synoptic evaluation of reef health. 

 

 The main indicators of reef health are benthic cover, productivity and 

calcification.  Only very broad trends are known regarding the spatial distributions of 

these parameters.  Reef geomorphology is a function of antecedent topography and 

physical forcings (e.g., waves, currents, light), and different geomorphic zones often 

exhibit characteristic biological communities (Stoddart, 1969).  Natural, balanced coral 

reefs are mosaics of coral, algae and sand.  When corals die, their skeletons are invaded 

by fleshy algae and boring organisms. Healthy reefs usually increase coral coverage 

during recovery from disturbance, with corals often returning to the pre-disturbance level 
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(Connell, 1997).  On degraded reefs, there is little or no recovery of corals.  With the loss 

of reef-builders, the carbonate structure erodes, ultimately becoming a flat bottom with 

shifting rubble and sand. 

 

 In short, reef “health” is reducible to the quantitative measure of the distribution 

of coral, algae and sand (i.e., benthic cover).  The amounts and spatial arrangements of 

these benthic types are important for understanding coral reef processes, which in turn are 

fundamental to coral reef health.  Satellite spectral imaging is perfectly suited to the task 

of mapping coral reef bottom-types. 

 

 Productivity and calcification also follow geomorphology, with maximal rates 

generally occurring in zones of high wave and current energy (Kinsey, 1983).  The few 

observations are considerably uniform across latitudes, leading to the hypothesis of 

“standard” performance: reef patches with 100% coverage of 100% of a given benthic 

type exhibit modal rates of productivity and calcification, regardless of location around 

the world (Kinsey, 1983; Kinsey, 1985).  This fortuitous relationship has been the basis 

for a few case studies that utilize remote sensing to map benthic cover, then apply the 

modal rates to extrapolate to the ecosystem scale (Atkinson and Grigg, 1984; Andréfouët 

and Payri, 2001; Brock et al., 2006; Moses et al., 2009). 

 

 Kuchler et al., (1988); 

Green et al., (1996); Mumby et 

al., (2004); Andréfouët et al., 

(2005); Hochberg (2011); and, 

Goodman et al., (2013) provide 

good comprehensive reviews of 

the history of coral reef remote 

sensing. The following is a very 

brief overview: From the 1970s 

through the1990s, imagery from 

high-resolution (30 - 80 m) 

multispectral sensors, including 

the Landsat Multispectral 

Scanner (MSS), Thematic 

Mapper (TM), Enhanced 

Thematic Mapper Plus (ETM+); 

the SPOT High Resolution 

Visible (HRV); and the Terra 

Advanced Spaceborne Thermal 

Emission and Reflect-ion 

Radiometer (ASTER), was used 

to effectively map reef geomorphology. Because different geomorphologic zones are 

associated with characteristic benthic communities, some investigations extrapolated map 

themes to depict biotope type.  The advent of high-resolution airborne spectral imaging 

(e.g., AVIRIS, HyMap, CASI) in the 1990s led to direct mapping of reef biological 

communities.  This was further demonstrated by space-borne spectral imagers (e.g., EO-1 

Figure 2.6.1 – Spectral unmixing example of 

Kaneohe Bay, Hawaii using AVIRIS (16 m spatial 

resolution), illustrating sub-pixel composition of 

sand, coral and algae (Goodman and Ustin, 2007). 
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Hyperion, HICO).  In the early 2000s, very-high-resolution multispectral imagery (e.g., 

IKONOS®, Quickbird®) became widely available to the public, and this sparked a wider 

interest among coral reef researchers into using remote sensing products in their studies.  

Through the history of coral reef remote sensing, the only attempt at developing a 

consistent, global product has been the Millennium Coral Reef Mapping Project, which 

used Landsat-TM and -ETM+ imagery as basemaps for manual digitization of reef 

geomorphology (IMaRS-USF and IRD, 2005; IMaRS-USF, 2005; UNEP-WCMC, 

WorldFish Centre, WRI and TNC, 2010). 

 

 HyspIRI’s spatial and spectral resolutions afford the potential to develop the first 

global map of benthic community structure and thus reef health, showing the 

distributions of coral, algae and sand for the reefs of the world.  As a spectral imager, 

HyspIRI has the spectral resolution to discriminate between these three fundamental 

bottom-types with very high accuracy (Hochberg and Atkinson, 2003).  It has also been 

shown that higher spectral resolution equates to improved capacity for classifying coral 

reefs to increased water depths (Botha et al., 2013).  With a ground sample distance of 60 

m, HyspIRI pixels would not have the ability to spatially resolve homogeneous patches of 

the bottom-types.  But, this is not a strict requirement, as spectral unmixing provides a 

mechanism to identify sub-pixel composition (e.g., Figure 2.6.1; Goodman and Ustin, 

2007).  Certainly, HyspIRI is capable of spatially delineating reef geomorphology. 

 

 Benthic community structure products can form the basis for higher-level derived 

products, namely primary productivity and calcification using modal rates. An alternative 

approach would be to use HyspIRI imagery to model light absorption and light-use 

efficiency of the benthos (Hochberg and Atkinson, 2008), as is routinely done in 

terrestrial remote sensing studies (e.g., Running et al., 2004).  Important ancillary 

products include water depth and water optical properties. 

Kelp 
Giant kelp (Macrocystis pyrifera) forests are among the most productive systems 

on earth, and provide food and habitat for a diverse assemblage of ecologically and 

economically important species, including algae, invertebrates, fish and marine mammals 

whose consumptive and non-consumptive uses produce at least $250 million in revenue 

per year (Dayton and Tegner, 1984; Mann, 2000; Leet et al., 2001). The high growth rate 

of giant kelp is coupled with a relatively short lifespan, leading to standing biomass 

turnover six to seven times per year (Reed et al., 2008) and thus necessitating high 

demands for nutrients such as carbon and nitrogen. Nutrient delivery to giant kelp forests 

changes in mechanism and magnitude throughout the year, with upwelling processes, 

internal waves, terrestrial storm runoff and biological regeneration all being important 

nitrogen inputs (McPhee-Shaw et al., 2007; Hepburn and Hurd, 2005).  

 

Factors such as grazing, anthropogenic impacts and wave action contribute 

greatly to biomass reduction (Reed et al., 2011). El Niño events cause a decrease in 

upwelling, which leads to warmer sea surface temperatures, low nutrient concentrations 

and increased storm and wave activity, which greatly reduces giant kelp density and 

declines in kelp forest associated fishes (McGowan et al., 1998). Kelp responds quickly 

to changes in environmental conditions, and so the physiological condition of giant kelp 
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displays great seasonal and inter-annual variability, such as extremely high growth rates 

(up to 0.5 m d-1) during optimal conditions, surface frond deterioration during periods of 

low nitrate availability and regional crashes associated with changes in the Pacific 

Decadal Oscillation (Zimmerman and Kremer, 1984). 

 

Recent work by Cavanaugh et al., (2011) has established the method of using 

multispectral remotely sensed images from the Landsat TM sensor to estimate giant kelp 

biomass. This work has led to a superb time series of kelp biomass in the Santa Barbara 

Channel at a spatial and temporal resolution that would be impossible using field 

observation alone, and provided information for numerous studies on subjects such as net 

primary production, food webs and population synchrony (Reed et al., 2011; Byrnes et 

al., 2011; Cavanaugh et al., 2013). This work is continuing along the California and Baja 

California Peninsula using the Landsat ETM+ sensor and will soon incorporate the 

recently launched Landsat Operational Land Imager (OLI).  

 

Currently, work is under way to better understand the relationship between giant 

kelp reflectance and various growth and productivity metrics. A time series of laboratory 

measured spectral properties of surface blades from kelp forests along the California 

coast is being related to photosynthetic pigment and tissue elemental concentrations and 

ratios. The temporal variation of kelp reflectance in these forests will be related to growth 

and productivity measures to ultimately establish reflectance indices for “photosynthetic 

condition.” These indices will be adjusted for hyperspectral data from AVIRIS, which is 

currently imaging kelp forests 3x year-1 in the Santa Barbara Channel through the 

HyspIRI Preparatory Airborne Campaign.  

 

HyspIRI can provide products that not only show the spatial distributions of giant 

kelp forests through time, but also provide information on the changes of pigment 

concentrations and ratios as light and nutrient levels change. As stated above, giant kelp 

exists in areas of coastal upwelling, which vary seasonally and interannually, leading to 

nutrient levels that differ by greater than an order of magnitude. Once appropriate 

reflectance indices for pigments and other photosynthetic metrics are established, 

HyspIRI will be able track the changes of these measures over large spatial scales for this 

important foundational species.  

Submerged Aquatic Vegetation 
 Seagrasses cover extensive coastal areas and are widely distributed, from the 

temperate northern to the temperate southern oceans, including all the tropical coasts in 

the world (Short et al., 2007). Although there are few species of seagrasses (about 60 

species), the geographic distribution of a single species can cover thousands of kilometers 

(Short et al., 2007). 

 

Seagrass classification and maps have been successfully retrieved from 

hyperspectral aerial imagery and multispectral satellite data (e.g. Andréfouët et al., 2004; 

Phinn et al., 2008) making use of differences in reflectance associated with seagrass 

species and their biomass. Hyperspectral information, such as the proposed by the 

HyspIRI mission, will enhance the seagrass habitat detection and mapping (Figure 2.6.2). 
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Candidate Products or Applications – abiotic cover maps  
 The detection of changes in the distribution of abiotic material, as well as 

variations in water properties, can have profound implications for the condition and 

health of submerged habitats. These relationships contribute biological and ecological 

significance to the assessment of non-living benthic components (such as sand and 

sediment), and also dictate a level of synergy between benthic habitat analysis and many 

other aquatic applications, particularly those associated with water-column retrievals and 

sea surface temperature. As a result, the capabilities HyspIRI provides for assessing 

benthic composition, and the capabilities it offers for deriving various water properties, 

both contribute to understanding the environment that surrounds benthic habitats. 

Sand and Sediment 
 The ability to differentiate biotic from abiotic benthic components, such as 

distinguishing sand from coral and algae, is relatively straightforward when the spatial 

resolution of the imaging sensor is less than or equal to the scale of habitat distribution. 

However, when the spatial resolution of the imaging sensor is greater than that of the 

scale at which habitat components vary, differentiating these components benefits 

Figure 2.6.2 – Comparison of Submerged Aquatic Vegetation (SAV) mapping in 

Pinellas County, FL using three different sensor systems: Landsat TM and EO-1 

Advanced Land Imager (ALI) and Hyperion. Results indicated highest accuracy was 

achieved using Hyperion. SAV classes depict percent habitat cover: III ≥75%, IIB 50–

74%, IIA 25–49%, IB 1–24%, and IA <1%. (Pu et al., 2012) 
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significantly from the use of spectral unmixing techniques. For example, whereas sand is 

easily distinguished from seagrass due to substantial differences in their relative 

magnitudes of reflectance, without the necessary spectral information and ability to use 

unmixing, image classification is hindered along habitat margins and areas of substantial 

heterogeneity (e.g., areas of mixed sand and seagrass). This becomes particularly relevant 

at the spatial resolution of HyspIRI, where unmixing plays a pivotal role in assessing sub-

pixel habitat composition. The significance this has to submerged aquatic habitats is that 

it contributes to our ability to establish baselines and assess changes in sand and sediment 

distribution that in turn can be used to evaluate habitat loss after storm events or other 

disturbances. 

Water-Column and Benthic Habitats 
 As discussed in previous sections, there are a number of applications and products 

related to water-column retrievals, such as optical properties and water constituents, 

which can be derived from HyspIRI imagery. When these capabilities are extended to 

also include associated environmental stressors and climatic events, such as algal blooms, 

terrestrial runoff and sediment resuspension, certain situations and particular conditions 

can also be indicative of impacts to benthic habitats. 

Water Surface Temperature 
 Remote sensing of water surface temperature, particularly as it relates to coral 

health and coral bleaching, is an established field, with a strong scientific foundation and 

a robust lineage of operational products. For example, consider some of the many tools 

offered through NOAA’s Coral Reef Watch program, such as the HotSpot, Degree 

Heating Week and Bleaching Alert products. While effective for regional and global 

assessments, such analyses are produced at scales measured in kilometers (Figure 2.6.3), 

and thus do not resolve spatial details within close proximity to most reefs. The 60 m 

resolution TIR imagery to be obtained for shallow aquatic habitats by the HyspIRI 

program will provide valuable insight into localized spatial dynamics of sea surface 

temperature. This, in turn, provides a foundation for investigating reef-scale biological 

and ecological relationships associated with coral bleaching, as well as studying coral 

adaptation to changing environmental conditions.  
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Figure 2.6.3 – Comparison of different spatial resolution output from the 

Multi-scale Ultra-high Resolution (MUR) SST analysis, with increasing 

detail evident at higher resolutions (courtesy Physical Oceanography 

Distributed Active Archive Center, JPL). HyspIRI will provide even 

higher resolution (60 m), and hence greater detail, for shallow water areas, 

and similar resolution (1 km) for the global oceans. 
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3. Discussion 
 

 The previous sections develop a conceptual list of data products for the HyspIRI 

mission to support aquatic remote sensing of coastal and inland waters.  These data 

products were based on mission capabilities, characteristics and expected performance. 

The topic of coastal and inland water remote sensing is very broad.  Thus, this report 

focuses on aquatic data products to help keep the scope of this document manageable.  

The HyspIRI mission requirements already include the global production of surface 

reflectance and temperature.  Atmospheric correction and surface temperature algorithms, 

which are critical to aquatic remote sensing, are covered in other mission documents.  

Hence, these algorithms and their products were not evaluated in this report.  In addition, 

terrestrial products (e.g., land use/land cover, dune vegetation, beach replenishment) were 

not considered. It is recognized that coastal studies are inherently interdisciplinary across 

aquatic and terrestrial disciplines, but products supporting the latter are expected to 

already be evaluated by other components of the mission. The coastal and inland water 

data products that were identified by the HASG covered six major environmental and 

ecological areas for scientific research and applications, including remote sensing of 

wetlands, shoreline processes, the water surface, the water column, bathymetry and 

benthic cover types.  Accordingly, each product was evaluated for feasibility, given the 

HyspIRI mission characteristics, and whether it was unique and relevant to the HyspIRI 

science objectives. 

 

 For each of the six major environmental and ecological areas of aquatic data 

products, several key example data products have been identified (see Table 3.1).  These 

were assigned priority ranking based on three major factors.  The first was the uniqueness 

to the HyspIRI mission, specifically, the global hyperspectral VSWIR spectrometer or 

TIR band measurements that it will produce.  In certain cases, products could be 

identified as not being easily generated on global scales via any other orbiting remote 

sensing asset planned by the US government.  Second, the urgency for such data products 

in the support of scientific research and application was weighed.  In particular, the 

involved assessing how well products contribute to the HyspIRI science questions or 

were tied to objectives identifiend by the 2007 Decadal Survey. In addition, the 

importance or urgency to science research and applications was also considered, even if 

not clearly defined by the mission science questions or Decadal Survey.  Finally, the 

feasibility or ease of implementation, and the chances that accurate results would be 

obtained was considered.  Combining these three criteria, a subjective priority was 

assigned to key candidate products and applications. 
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  1. Wetlands — In general, wetland remote sensing represents one of the strongest 

areas amongst identified data products. This is largely because of a generally higher 

signal-to-noise available to generate these products more accurately, especially at longer 

wavelengths.  The most important of these products are the delineation of wetlands from 

other terrestrial and aquatic surface cover types.  High spatial, hyperspectral data from 

HyspIRI is expected to be uniquely useful for the creation of new baseline global maps of 

wetland distribution. Hyperspectral data may also provide information that can 

discriminate between different types of wetlands (e.g., saltmarshes, mangroves).  

Determining species composition would also be extremely useful, but classification 

schemes at this level have not been demonstrated on a global scale.  As coastal marshes 

tend to form monospecific canopies that zonate in response to changes in the stress 

gradient (e.g., changes in drainage or salinity), mapping the location of individual species 

could provide important information regarding the marsh characteristics, and the HyspIRI 

mission could lay the groundwork for understanding how those characteristics are 

changing globally.  Identification of canopies at the species level using field data has 

been done successfully.  However, applying hyperspectral techniques to aerial data and 

multispectral satellite data has had mixed results.  Although it is hoped that HyspIRI 

Figure 3.1 – Diagram of Candidate Aquatic Data Product Generation.  Raw and 

calibrated data products (Level-0 and Level-1, respectively, depicted with light gray 

boxes) are inputs to Level-2 algorithms.  Resulting Level-2 products are generated by 

the mission (green boxes).  Various Level-2 satellite swath products (blue), and Level-3 

or Level-4 maps products (purple), are subsequently generated by the community.  
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hyperspectral capability could demonstrate coastal wetland species discrimination, we 

currently consider this vital and unique product to be experimental at the global scale. 

 

Determining the fraction of vegetation cover or the fraction of open water within 

a pixel, are physical measurements that directly describe the physical condition of the 

surface.  These fractions can theoretically be derived using spectral unmixing algorithms, 

which would be ideally supported by the HyspIRI spectrometer.  Assessing, and where 

possible, minimizing their uncertainty is an additional challenge, which would require 

some error analysis and ground validation. Because HyspIRI currently does not have a 

validation program, these (and other) physical measurements are recommended being 

given a slightly lower priority.  However, because a relatively coarse 60-meter spatial 

resolution is needed to globally map wetlands, it is important to recover some structural 

information that would better inform the user of conditions in the wetland. 

 

Other complementary, multi-band wetland products were also considered for the 

HyspIRI mission.  Although these additional products are not unique to the HyspIRI 

mission, they are still compelling because they could be used contemporaneously with 

other HyspIRI data products in research studies.  For instance, as an early study, the 

results of a new hyperspectral algorithm to estimate a particular vegetation parameter 

could be compared to quantities inferred from a multi-band index (e.g., Vegetation 

Indices (VI) or NDWI, which are based on very feasible multi-band algorithms).  Given 

that hyperspectral bands could be combined to further reduce noise, HyspIRI could very 

likely provide very good quality data for such indices.  Similarly, thermal bands can be 

combined with VSWIR spectroscopy to obtain canopy temperature and soil moisture, 

which could perhaps feed into energy budget, evapotranspiration and hydrological 

models.  These measurements would complement contemporaneous wetland delineation 

data products, which are more uniquely tied the HyspIRI mission capabilities. 

 

2. Coastline and Ice Margins — Most data products related to land/water 

geomorphology are not uniquely or particularly well supported by the HyspIRI 

instrument.  Under typical conditions, multi-band algorithms could delineate land and 

water to identify shorelines.  In addition, this would probably be better accomplished 

using an instrument with higher spatial resolution, such as Landsat 8 or 9.  However, for 

some shallow water or turbid conditions, the hyperspectral data might be necessary to 

better discriminate emergent from submerged landscape.  In such cases, HyspIRI could 

become a superior tool to multi-band instruments for mapping coastlines (e.g., after a 

severe storm disturbance).  Combining this with the thermal band could further enhance 

the discrimination.  In addition, using contemporaneous thermal imagery with VSWIR 

spectroscopy over coastal waters could identify diffuse sources of nutrient loading (e.g., 

from ground water discharge) and the biological response in the affected waters.  This 

unique capability of HyspIRI could shed new light regarding how nutrients from diffuse 

sources are delivered to coastal and inland waters, a process that is currently not well 

understood.  Similarly, the combination of VSWIR and thermal measurements could be 

used to observe changes in polar water conditions along the ice edge, which is strongly 

affected by climate change.  However, separating the VSWIR spectrometer and thermal 
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band instrument onto separate orbiting platforms, as has been suggested, would degrade 

the quality of this compelling observational opportunity.  

 

3. Water Surface Features — HyspIRI can provide useful information regarding 

materials, biotic and abiotic, that are floating on the water surface.  The primary products 

would be material identification, coverage density and mass estimates for various types 

of surface cover, as discussed in Section 2.2.   Water surface features tend to be transient 

in nature, being subject to currents and wind conditions.  Therefore, observations will be 

somewhat limited by the temporal measurement frequency of HyspIRI.  However, the 

hyperspectral data can serendipitously be used to identify the composition of floating 

material when observed by the VSWIR spectrometer.  Imaging the spatial distribution of 

floating material could provide some insight into the original, and some aspects of small-

scale dynamics of these surface formations. Likewise, the availability of hyperspectral 

data could support spectral unmixing algorithms, which could provide further 

information regarding the nature of the surface features.  Understanding how biotic 

materials on the surface (e.g., trichodesmium mats) affect the spectral signal at coarser 

spatial resolutions could also benefit understanding of data from traditional ocean color 

instruments at coarser resolutions. How well hyperspectral algorithms can identify and 

quantify surface features will likely to depend on the ability to detect a signal from the 

material observed. Some materials, such as masses of floating plastics, may be 

problematic, while other surface materials may be more readily measured.  Therefore, 

some priority can be assigned to certain types of surface materials. In addition, 

observating the effects of disasters, such as oil spills or the debris following a tsunami, 

can be given increased priority in real-time acquisitions. The mission Level-1 

requirements provide for steering the VSWIR instrument to take repeated looks only a 

few days apart.  However, such observations are expected to be rare, and likely will not 

include slicks of algal or microbial mats, unless the event is particularly significant and 

presents a danger to coastal residents or economy. 

 

4. Water Column — Retrieval of optical constituents in the water column is 

perhaps the most challenging measurement for the HyspIRI mission.  This is because of 

the relatively weak signal from such substances and the dynamic nature of water 

conditions.  However, the HyspIRI VSWIR spectrometer, if sufficiently calibrated, has a 

signal-to-noise ratio similar to HICO, and is expected to be able to retrieve the typically 

higher concentrations of phytoplankton pigments, and optically active dissolved and 

suspended material in coastal and inland waters.  The temporal resolution of HyspIRI 

would limit what dynamics can be observed, but spatial distributions of river plumes and 

algal blooms can still provide information on underlying dynamic processes.  

Identification of pigments could tag certain spectral functional types of phytoplankton for 

algal blooms that are observed.  As these features are transient, HyspIRI can only support 

mapping of the most persistent of patterns for Level-3 or 4 data products.  Nonetheless, 

the data could still be useful to coastal and inland communities when available, providing 

episodic information regarding events such as harmful algal blooms or degradation of 

inland water quality.  In fact, only one or two images per season should be sufficient to 

indicate general water quality for many small and medium-sized lakes for water resource 
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managers.  Also, having some idea of what is in the water column could help acquire 

information regarding the benthic community beneath. 

 

The key products for the water column would be generated in a hierarchical 

fashion.  Hyperspectral surface reflectance, Rrs, and water surface temperature are the 

Level-2 products generated by the mission.  The community would then be responsible 

for generating any other AOP quantities, such as Kd, and IOP quantities from 

hyperspectral reflectance, including hyperspectral absorption and backscatter.  Other 

geophysical quantities, such as concentrations of CDOM, TSM or Total Suspended 

Sediment (TSS), and pigment concentrations would be generated based on IOP products 

(and possibly AOP products). A key phytoplankton pigment of interest will be 

chlorophyll a concentration (chl-a), but several others are identified in Section 2.4.  The 

presence of indicator pigments can be used to differentiate phytoplankton functional 

types in a Level-2 hyperspectral image.  Combined with thermal data, functional types 

could possibly be further discriminated.  In addition, the reflectance data could be used to 

measure the chlorophyll fluorescence line height, providing a window into phytoplankton 

photosynthesis, and hence, possibly primary production. 

 

5. Bathymetry — HyspIRI can also be used to perform shallow water 

bathymetry. This has been done using multi-band instruments with some success.  

Improvement has been achieved with hyperspectral data.  Therefore, HyspIRI offers an 

opportunity to determine the depth of shallow coastal waters and lakes anywhere on the 

globe.  This would provide bathymetry in regions that are too expensive or dangerous to 

measure in situ. The quality of this product depends on optical depth and the bottom 

reflectivity, not just bottom depth. Turbid water or very deep water would be 

problematic.  As turbidity can be a transient condition, repeated attempts to measure 

depth should improve the data product over time.  Thus, HyspIRI can provide bathymetry 

maps that may increase in accuracy over the course of the mission.  Therefore, this is 

another important product that can be supported by the HyspIRI mission. 

 

6. Benthic Community — Maps of benthic cover are also an important product 

that can be provided by HyspIRI.  Like wetlands, coral reefs and SAV beds are largely 

stationary features, and well suited for being mapped.  Thus, the mission’s temporal 

resolution is less of an issue.  The bottom reflectance can be obtained through modeling 

the contribution of the water column to the Level-2 reflectance data.  Classification 

algorithms are employed to discriminate between abiotic cover, such as sand, mud and 

and rocks, as well as biotic cover, including algae, coral reefs, shell beds and reefs, and 

SAVs.  Further analysis can help discriminate these types of abiotic and biotic cover.  

Kelp forests, which often rise to the surface, can also be identified and mapped.  In some 

cases, specific types may be further classified, including bleached verses normal corals.  

Relative quantities of cover types within 60-meter pixels may also be determined through 

spectral unmixing algorithms.  Combining these maps with maps of persistent patterns in 

surface temperature, may also support baseline studies of how climate change affects 

benthic ecologies. 
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Category Data Product Priority
       

1. Wetlands Wetland Delineation and Type 1 
Fraction of Vegetation Cover (subpixel) 2 
Fraction of Water Cover (subpixel) 2 
Fraction of Exposed Soil (subpixel) 2 
Sub-aerial Biomass 3 
Species Map 3 
Vegetation and Water Indices 3 
Evaporation Rates 3 
Soil Water Content 3 
Substrate Type 4 
Substrate Grain Size 4 
Substrate Bearing Strength 4 

      
2. Coastlines / Ice Margins Groundwater Discharge and Eco Response 2 

Ice Margin Phytoplankton Pigments 2 
Floods and Coastlines Maps (Episodic) 3 

      
3. Water Surface Features Water Surface Temperature* 1 

Floating Material Type Map 2 
Floating Material Density 2 
Total Mass 3 

      
4. Water Column Apparent Optical Properties   

   -Remote Sensing Reflectance (Rrs)* 1 
   -Diffuse Attenuation Coefficient (Kd) 3 
Inherent Optical Properties   
   -Absorption (a) 3 
   -Particle Backscatter (bp) 3 
Fluorescence Line Height 2 
TSM 3 
TSS 3 
CDOM 3 
Chlorophyll a concentration 3 
Pigment Concentrations 3 
Phytoplankton Functional Type 3 

      
5. Bathymetry Depth 1 
      
6. Benthos Benthic Cover Type (Coral, Algae, SAV, etc.) 1 
  Species Maps 3 
  * - Project Supported Data Products   

Table 3.1 - Products and Prioritization.  Summarized are key data products or 

applications for Sections 2.1 through 2.6 of this report.  For each data product or 

application, a priority is assigned from 1 to 4 (1 being the highest priority), which is 

based on the relevance to the HyspIRI mission, the urgent and compelling nature and the 

feasibility of each proposed product. 
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4. Conclusions and Recommendations 
 

A salient strength of HyspIRI for coastal and inland water applications is its high 

resolution — both spatial and spectral. The inclusion of contemporaneous thermal 

observations with the VSWIR spectroscopy at high spatial resolution opens new avenues 

to study coastal and inland waters, including the coupling of physical and ecological 

processes.  Issues of scale and interactions between complex biophysical dynamics and 

ecosystem response could provide input into modeling studies for important 

biogeochemical constituents.  Studies of scale could lead to better algorithms or enhanced 

understanding of the uncertainties encountered in coarser-resolution ocean color 

instruments. The three-year HyspIRI mission could establish techniques that are 

transferrable to future missions that would provide potentially near-real time operational 

support for inland and coastal water resource management.  Further work toward 

determining the extent and quality of HyspIRI-derived bio-optical products, taking into 

account the instrument and mission characteristics, is recommended, and would need to 

be chiefly carried out by the research community, as the mission is not scoped to produce 

any scientific products beyond surface reflectance and temperature.  The HASG hopes to 

continue to encourage community researchers who are interested in the development and 

use of these products to put forward their analyses and views regarding the quality of 

HyspIRI-derived aquatic data products, and provide the forum for an on-going dialogue. 

 

With this in mind, the HASG discussed and compiled a list of candidate data 

products and applications.  These were further assigned priorities to help inform future 

mission planning for NASA, and community development of data products and 

algorithms.  However, these priority assignments should serve only as general guidance.  

In addition, the list of candidate products and applications described in this report should 

not be considered exhaustive.  Future proposals can and should be expected to introduce 

new ideas that employ the VSWIR spectrometer, the thermal band instrument, or both in 

observations of coastal and inland waters.  However, the current candidate list should 

provide a sketch of the types of efforts that are likely to be of interest to the coastal and 

inland aquatic remote sensing communities. 

 

Two main challenges will face the coastal and inland aquatic remote sensing 

community in developing the data products described in this report. First, community-

owned Level-2, 3, or 4 algorithms must be shown to generate products on synoptic scales 

using HyspIRI Level-1 or Level-2 surface reflectance or temperature data.  Second, it 

must also be shown that these community-generated data products will be of sufficient 

quality to achieve science objectives, especially those that are aligned with answering the 

mission science questions. To address these two challenges, recommendations are 

provided in the last section of this report.  But, these recommendations are also not 

exhaustive. A collaborative dialogue will need to be continued between community 

algorithm developers, researchers in the field, mission engineering teams, and project and 

program management.  To facilitate this, some earlier algorithm development should be 

supported by NASA. In addition, other efforts (e.g., PACE) and other resources can be 
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leveraged when possible. The HASG can serve as a forum to facilitate this discussion 

throughout the algorithm development phase of the mission. 

 

To that end, it is recommended that HyspIRI community efforts be synergized 

with other efforts in the greater coastal and inland remote sensing community. A 

community-wide dialogue could also be facilitated through the HASG, by providing a 

forum for development efforts supporting other hyperspectral or coastal and inland water 

remote sensing.  In addition, it is important that the HASG leadership inform mission 

project and program management of community developments, interests and 

recommendation.  Finally, the HASG could facilitate a dialogue with the mission 

engineering team to develop a complete understanding of instrument characteristics, 

calibration, and project-owned Level-2 algorithm function and characteristics.  It is 

expected that this exchange could be collaborative, but moderated by project 

management, as necessary.  It is also assumed that any adjustments for instrument 

behavior, calibration, or Level-2 algorithm characteristics will be implemented and 

maintained in community-developed algorithms, unless directed otherwise by project 

management. 

 

Some initial discussion has begun within the HASG regarding the first challenge 

of a lack of basic generality for coastal and inland water data products.  In most cases in 

the literature, it was found that many of the existing algorithms needed to be tailored for 

application on a scene-by-scene basis.  Thus, studies so far have involved only a limited 

set of data.  More development is needed to demonstrate and support generation of data 

products capable of support global or large-scale studies.  There are opportunities that 

may help address this issue.  Currently, the HyspIRI Preparatory Airborne Campaign is 

providing some data over aquatic regions along the coast of California, both from aerial 

and in situ instruments.  Similar efforts have been undertaken with the PRISM airborne 

spectrometer over coastal waters.  In addition, HICO data are now being operationally 

generated and distributed via the Ocean Biology Processing Group (OBPG).  Finally, a 

new PACE science team is being formed to look at hyperspectral atmospheric correction 

over water and retrieval of water column inherent optical properties.  These resources and 

associated efforts may help build operational capabilities for generation of global data 

sets.  However, given the diverse array of Level-2, 3, and 4 products, and their unique 

characteristics and challenges, further research will be needed to fully realize global 

coastal and inland water remote sensing data support for all selected Level-2, 3 and 4 data 

products and their applications.  Therefore, in addition to leveraging off various existing 

resources and efforts, it is recommended that mission program management consider 

allotment of some initial resources to support some HyspIRI-specific aquatic algorithm 

development efforts. 

 

A number of other issues relate to the second major challenge.  Level-1 products 

must be sufficiently calibrated, and any instrument artifacts that would otherwise 

undermine data quality must be minimized.  This could be addressed by developing a full 

understanding of instrument characteristics, such as radiometric and spectral response, 

polarization response and noise characteristics.  In addition, Level-2 VSWIR spectral 

remote sensing surface reflectance requires a robust atmospheric correction.  
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Atmospheric correction over water is a significant but necessary challenge for aquatic 

remote sensing, especially in coastal and inland waters, where assumptions made for 

deep-water applications do not hold, and where terrestrial aerosols and trace gas 

absorption can become more complex and harder to address.  In addition, correction for 

specular glint in coastal and inland waters at 60-meters resolution, spatial scales where 

surface wind fields cannot be employed to model surface roughness, must leverage off of 

spectral information to discriminate contribution from the water/air interface and from 

the atmospheric. Thus, glint correction will likely need to be integrated into the 

atmospheric correction.  The coastal and inland water remote sensing community, needs 

to carefully consider all these issues while algorithms are being developed.  Part of that 

evaluation might be to perform sensitivity analyses for community-developed algorithms 

to determine the potential impact of instrument artifacts, noise, calibration uncertainty, 

atmospheric effects and glint to data product quality.  Such a step would help algorithm 

and data product developers understand the input quality requirements, and also lay the 

groundwork for data product accuracy or uncertainty estimates. 

 

In addition, the current Level-1 mission requirements state that retrievals over 

open water will have 60-meter spatial resolution, wherever the depth does not exceed 50 

meters.  For water with greater depths, the spatial resolution switches to 1000 meters.  

However, to be sure that coastal data products achieve the coverage required to answer 

mission science questions, a new mask for maintaining the 60-meter resolution may need 

to be developed.  Project management has expressed interest in supporting such a mask, 

provided that it does not significant increase the mission data volume, and that it is 

simple to implement.  Therefore, it is a task for the community to develop a new mask 

that achieves optimal coverage, without significantly increasing the data volume.  This 

will be an on-going topic in upcoming HASG forums. 

 

Finally, as previously mentioned, many of the aquatic data products are, by their 

nature, highly sensitive to uncertainty in the steps taken to obtain Level-2 surface 

reflectance data (e.g., calibration, adjusting for subtle instrument behavior and 

atmospheric correction).  The complex interdependency between data products and the 

reliance on project generated input, suggests community-supported product generation 

and distribution must be linked to a calibration/processing team that is familiar with the 

instrument characteristics and performance, the required algorithms to generate Level-1 

and 2 surface reflectance and temperature products, and the interrelationships between 

products.  This model has worked well for NASA ocean color remote sensing to support 

biological oceanographic research.  It is thus recommended that such a team be supported 

for the HyspIRI data product community. This capability could possibly be built on 

existing resources cost-effectively (e.g., those of the OBPG).  However, such a 

calibration/processing team would also require an expanded interdisciplinary skill set 

because of the unique and diverse characteristics of coastal and inland aquatic 

environments.  Even an existing team, such as the OBPG, would need to supplement its 

current expertise to move to coastal and inland water applications.  This could be done by 

permanently adding experts to the team, by having coastal and inland water community 

members rotate positions on the calibration/processing team, or by the HASG 

maintaining close communication links between community and calibration/processing 
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teams.  The last option, in particular, is the most cost effective and, in the case of the 

OBPG, the easiest to facilitate as both the HASG and OBPG management are based at 

the same NASA center. 
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