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Introduction 
Since it is a fundamental linkage between many biogeophysical and biogeochemical 
processes, accurate spatially-distributed information regarding evapotranspiration (ET) 
is critical for a broad range of scientific and practical applications. Remote sensing-
based approaches are the only viable mean for monitoring ET over the continuum from 
field to continental scales. Nonetheless, remote sensing is not without limitations. Chief 
among these is the infrequent acquisition of the medium to high-resolution imagery 
needed to dtermine ET via remote sensing-based models; this issue is further 
exacerbated by other factors such as cloud cover and instrumentation failure. A number 
of temporal scaling methods have been developed to fill the gaps in ET estimates 
between retrievals ( e.g. Jackson et al. 1983; Colaizzi et al. 2006; Delogu et al. 2012; Ryu 
et al. 2012; Cammalleri et al. 2014).. These approaches typically estimate the moisture 
flux as the produce of some reference quantity (χ) and its associate scaled quantity (f) 
according to: 

 𝐸�𝑡 = 𝜒𝑡𝑓𝑡  (1) 

where 𝐸� is the estimated ET and t is the time period of the estimate. Typically the 
reference quantity is one that is closely related to the moisture flux but can be measured 
or modeled more accurately and readily than ET itself. The scaled quantity is the ratio 
between the reference quantity and the moisture flux. For example, it is quite common 
to estimate ET expressed in terms of the latent heat flux using the available energy as 
the reference quantity and evaporative fraction as the scaled quantity. 

The aim of this project is to assess the error introduced into ET estimates by temporal 
upscaling under realistic conditions. Specifically, this project uses in-situ measurements 
collected over a variety of land cover types as proxy for remotely-sensed data to 
evaluate the impact of multiple reference quantities and interpolation techniques on the 
estimated moisture flux. By doing so, this study seeks to provide both insights into the 
relative strengths of the differing temporal upscaling approaches and discern a 
maximum return interval threshold for obtaining acceptable ET estimates.  

Methods 
Datasets 
Datasets, including local meteorological conditions, surface fluxes, and surface 
conditions collected as a part of the Ameriflux network (Baldocchi et al., 2001) were 
used for this study. The data were collected at 20 Ameriflux sites (Table 1) distributed 
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across the contiguous United States representing four distinct land cover types: 
Cropland, Grassland, Forest, and Open Canopy. Measurements were collected for a 
minimum of five years at each of the sites selected. 

After forcing closure of the energy balance while maintaining a constant Bowen ratio in 
order to more closely match the characteristics of model output, the 30-minute 
measurements were used to calculate the various reference quantities and scaled 
quantities. Finally, the daytime mean of these quantities were calculated for use in the 
subsequent analyses. Although it can nominally be taken as the period between 0800 
and 1800 LST, daytime is defined herein as the period between the first and last 
measurements during the day when the incident solar radiation exceeded 100 W m-2. 

 

Reference Quantities 
For this study, five reference quantities and their associated scaled quantities discussed 
in the literature were evaluated. The first three of these reference quantities, namely 
incident solar radiation (K↓), net radiation (Rn), and available energy (A), yield direct 
analogues of evaporative fraction. The remaining reference quantities are estimates of 
the moisture flux derived using local meteorological conditions. The first of these is the    
so-called reference ET expressed in terms of energy (λE0) and is defined according to 
Allen et al. (1998) as: 

  𝜆𝐸0 = 𝜆𝑣
𝑎Δ𝐴+𝛾𝐶𝑛𝑇𝐾

𝑈𝐷

Δ+𝛾(1+𝑈𝐶𝑑)
 (2) 

where λv is the latent heat of vaporization (J kg-1), a is a constant (1.1333×10-4 kg J-1), Δ is 
the slope of the saturation vapor pressure-temperature curve (kPa K-1), A is the 
available energy (W m-2), γ is the psychrometric constant (kPa K-1), Cn is a constant 
(1.1333×10-5 K s2 m-2), TK is the air temperature (K), U is the wind speed (m s-1), D is the 
water vapor pressure deficit (kPa), and Cd is a constant (0.25 s m-1). The second of the 

Table 1 Summary of Ameriflux sites used in this study. 

Site Location Land 
Cover Site Location Land 

Cover Site Location Land 
Cover 

Bondville 40.006 °N 
88.290 °W Cropland Kendall 

Grassland 
31.737 °N 
109.94 °W Grassland Missouri 

Ozarks 
38.744 °N 
92.200 °W Forest 

Brookings 44.345 °N 
96.836 °W Grassland Konza 

Prairie 
39.082 °N 
96.560 °W Grassland Rosemount 44.714 °N 

93.090 °W Cropland 

Brooks 
Field 

41.692 °N 
93.691 °W Cropland Loblolly 

Pine 
35.978 °N 
79.094 °W Forest Santa Rita 

Mesquite 
31.821 °N 
110.87 °W 

Open 
Canopy 

Chestnut 
Ridge 

35.931 °N 
84.332 °W Forest Lucky 

Hills 
31.744 °N 
110.052°W 

Open 
Canopy Tonzi Ranch 38.432 °N 

120.97 °W 
Open 

Canopy 
Fermi 

Cropland 
41.859 °N 
88.223 °W Cropland Mead 41.165 °N 

96.477 °W Cropland Vaira Ranch 38.407 °N 
120.91 °W Grassland 

Fermi 
Grassland 

41.841 °N 
88.241 °W Grassland Morgan 

Monroe 
39.323 °N 
86.413 °W Forest Walker Branch 35.959 °N 

84.287 °W Forest 

Freeman 
Ranch 

29.950 °N 
97.996 °W 

Open 
Canopy 

Niwot 
Ridge 

40.033 °N 
105.54 °W Forest    
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meteorologically-based reference quantities is the equilibrium latent heat flux (λEeq). It is 
defined as: 

   𝜆𝐸𝑒𝑞 = 𝐴 Δ
Δ+𝛾

 (3) 

with the variables defined as above. 

Interpolation Techniques 
In addition to a simple linear interpolation, two piecewise spline interpolation methods 
were evaluated as a part of this study, namely cubic and hermite spline interpolation. In 
contrast linear interpolation, which tends to yield accurate results only when the 
underlying data varies smoothly over time, the spline methods are less prone to error 
when the observed data varies abruptly. Similarly, the computationally more complex 
hermite spline method typically yields more accurate results when the gaps between 
observed data points are large (DeBoor, 1994).  

For this analysis, the temporal upscaling was conducted using daytime mean data and 
all possible combinations of the scaled quantities and interpolation methods at each 
Ameriflux site. Moreover, in order to maximize the robustness of the statistical analysis, 
all possible realizations were evaluated. The total number of possible realizations for a 
given return interval is equal to the length (in days) of the return interval. The 
individual realizations were generated by performing the analysis beginning on the 
consecutive days. 

Results & Discussion 
Persistence of the Scaled Quantities 
Due to its importance in determining the accuracy of the estimates, the persistence, i.e. 
degree of self-preservation, exhibited by the various scaled quantities was evaluated 
using its autocorrelation function. As can be seen in Figure 1, the autocorrelation 
decreases rapidly and in proportion to the inverse of the lag. In all cases, the 
autocorrelation is less than 0.75 for lags greater than one day. It falls below 0.5 for lags 
greater than 3 to 10 days. The results of this analysis, which concurs with results of 
other studies (Farah et al. 2004; Lu et al., 2013), indicates the scaled quantities are not 
persistent in the long term. It also suggests that interpolated values may not accurately 
reflect the actual values of the scaled quantities. As a result, this approach for temporal 
upscaling may have limited utility for predicting ET when the return interval is large. 

There are additional patterns evident from Figure 1. For any given land cover type, the 
mean autocorrelation functions for the analogues of evaporative fraction were 
statistically indistinguishable from one another based on t-tests conducted at the 95% 
confidence level; similarly, no statistically significant difference between the mean 
autocorrelation functions associated with the reference and equilibrium moisture fluxes. 
There were, however, statistically significant differences between the two subsets with  
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Figure 1 The mean autocorrelation function is shown for each land cover type and scaled quantity. The shaded area represents 
one standard deviation about the mean. 
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the scaled quantities that are analogues of 
evaporative fraction tending to be slightly 
more persistent than those derived 
meteorological data. 

The analysis also shows that differences in 
the mean autocorrelation functions that 
depend on land cover type. Regardless of 
the scaled quantity considered, the mean 
autocorrelation function decreases most 
rapidly over forested sites and the most 
slowly over the open canopy sites. Indeed, 
if the lag where the mean autocorrelation 
function reaches some threshold value, e.g. 
0.50, is plotted as a function as the mean 
daytime latent heat flux (Fig. 2), it can be 
seen that persistence decreases 
exponentially with the increasing flux. This 
suggests the return interval necessary to achieve accurate estimates of ET via temporal 
upscaling will be longer over relatively dry regions with a low moisture flux than over 
regions where ET is high. 

Accuracy of the Interpolated Scaled Quantities 
The root mean square error of the interpolated estimates of each of the scaled quantities 
was calculated for return intervals (gaps sizes) of up to 32 days. As can be seen in 
Figure 3, the root mean square error (RMSE) increased rapidly with increasing gap size 
regardless of the land cover type, scaled quantity, or interpolation method considered. 
In all cases, the RMSE, which increased according to a logarithmic function of return 
interval, reached 75% of its peak value within five days. These peak values varied with 
land cover type but typically ranged between 0.15 and 0.5 (neglecting the results using 
the cubic spline method). Although no well-defined relationship could be identified, the 
largest errors tended to be associated with those land cover types (Forest and Cropland) 
with the largest mean moisture flux. 

The results also show all of the interpolation methods yielded similar results for short 
return intervals (less than eight days). In contrast, for longer return intervals, the RMSE 
of the estimates using the spline interpolation methods were greater than when linear 
interpolation is used. Moreover, the RMSE of the estimates tended to much noisier for 
the spline techniques, particularly the cubic spline method. These large errors, which 
are indicative of “overshoot” errors, were most pronounced for those land cover types 
that type also demonstrated the highest average ET. 

 
Figure 2 The maximum lag where the autocorrelation 
function exceeds 0.50 is plotted as a function of the 
mean daytime latent heat flux. 
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Figure 3 The root mean square error associated with each scaled quantity is shown for each land cover type and interpolation 
method. 
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Accuracy of the Moisture Flux Estimates 
Not altogether unexpectedly, the accuracy of the moisture flux estimated via temporal 
upscaling closely paralleled the accuracy of the interpolated scaled quantities. Like the 
.scaled quantities, the RMSE of the flux estimates increases rapidly with return interval 
to peak values ranging between 31 W m-2 and 66 W m-2. Again, the greatest peak RMSE 
is associated with the land cover types with the highest ET, i.e. Forest and Cropland. 

By expressing the error due to temporal upscaling as relative standard error (RSE), it is 
evident that the error approaches 40%within 16 days regardless of land cover, scaled 
quantity, or interpolation method (Fig. 4). Using 20% error as a threshold, the maximum 
return interval ranged between five and seven days with the sites having the lower 
mean latent heat flux (Grassland and Open Canopy) having the longer maximum 
return interval. It can also be seen from the figure that there is no advantage to using 
the computational complex cubic and linear spline methods. The cubic spline 
interpolation had a strong tendency to suffer from overshoot errors and there was no 
significant difference in the performance of the linear and hermite spline interpolation 
methods. Finally, the lowest RSE was consistently associated with net radiation while 
the greatest RSE tended to be associated with reference evapotranspiration. 

Summary & Conclusions 
The persistence of all of the reference quantities considered decreased rapidly over 
time. For example, the lag necessary for autocorrelation to decease to 0.50 ranged 
between one and ten days with the lowest persistence associated with those land cover 
types with the highest mean ET. Similarly, regardless of the scaled quantity, land cover, 
or interpolation method, the error in the estimates of ET increased rapidly with return 
interval (gap size). Moreover, the error due to temporal upscaling was greatest over 
those land cover types with the highest ET. Using 20% error as the threshold, the 
maximum return interval ranged between five and seven days depending on land cover 
type. For a 10% threshold, the maximum return interval is approximately three day. 
This study also found that the scaled quantities that are analogous to evaporative 
fraction tended to those derived from meteorological conditions; net radiation yielded 
the ET estimates with the lowest error. Finally, the comparison of interpolation methods 
indicated there is no advantage to using the more computationally complex spline 
interpolation.  
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Figure 4 The relative standard error associated with each scaled quantity is shown for each land cover type and interpolation 
method. 
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