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Q1 - Importance: Human activities are causing rapid changes in biodiversity across the
globe. These changes are often irreversible and have major ramifications for the broader
Earth system and human well-being. There is an urgent need for an integrated global
observing system designed to quantify biodiversity on Earth and detect change through
time. Such a system, supported by satellite remote sensing providing regularly repeated,
systematic biodiversity data with global coverage and high spatial resolution, could profoundly
deepen our understanding of the pace and consequences of biodiversity change, and transform
our ability to predict and manage the future of Earth’s life support systems ™.

A global biodiversity observing system could address the following science and application
objectives: (O1) Characterize the global patterns of biodiversity with significantly higher spatial
resolution and coverage than currently available. (O2) Determine how biodiversity is changing
globally at landscape and regional scales and attribute those changes to specific drivers. (O3)
Determine how biodiversity changes influence key ecosystem functions (e.g., productivity) at
regional to global scales. (O4) Improve predictions of the future likelihood and potential
consequences of biodiversity change with an emphasis on identifying critical tipping points in
Earth's life support systems.

Biodiversity, short for biological diversity, is the variety of life on Earth. It includes the variation
among genes, species, their functional traits, the ecosystems within which they live, and how
they interact (Figs. 1 & 2). This complex web of life forms drives the functioning of ecosystems
through countless reciprocal interactions among organisms and the abiotic environment. These
maintain the processes (e.g., productivity, evapotranspiration, and decomposition) that control
the fluxes of carbon, water, nutrients, and energy through the Earth system. Human well-being
depends on biodiversity as a consequences of the ecosystem services it renders'®™'’; human
societies rely upon and benefit from the goods (like food, wood, and medicines), environmental
regulating services (like erosion control or climate regulation through carbon sequestration and
water cycling), and countless aesthetic and cultural services that biodiversity provides.

Despite its vital importance, Earth’s biodiversity is experiencing rapid and widespread decline
and alterations due to multiple interacting anthropogenic drivers'?. These include the loss,
degradation, and fragmentation of natural habitats, climate change, the spread of invasive species
and diseases through global trade and travel, overexploitation (the unsustainable removal of
organisms, e.g. overfishing), and pollution especially ocean acidification and the build-up of
nutrients from fertilizers. Despite accelerating policy and management responses, many of these
anthropogenic drivers of biodiversity loss continue to worsen'?.

Current rates of species extinction are now ~100 times higher than background rates in the
long-term fossil record" (Fig. 3). This rate is unprecedented in human history and may be
comparable to the five mass extinctions in Earth’s history (Barnosky et al. 2011); the most recent
one saw the disappearance of the dinosaurs sixty-five million years ago. An index of species
populations of many vertebrate animals, keystone indicators of overall biospheric integrity,
shows a 52 percent decline over the last 40 years' (Fig. 4). Although biodiversity is declining
globally, at local scales ecosystems are not systematically losing species'®, but rather are
experiencing rapid shifts in species composition and abundance (turnover); sometimes resulting
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in communities with entirely novel species configurations ' with unknown consequences '®. The
rapid pace of both biodiversity loss and change necessitates urgent action to develop a baseline
map of the global patterns of biodiversity (O1) at much finer spatial grains than currently
available and if possible at species level*"’. It is critical to know the current status of biodiversity
in order to know how it is changing and why (O2).

Mounting evidence synthesized from many biodiversity manipulation experiments, conducted
primarily at the field and lab scale, indicate that biodiversity changes threaten the ecosystem
services essential for human well-being?®?*. Consensus findings * show that biodiversity loss
tends to degrade ecosystem functioning (Fig. 5) and increase ecosystem vulnerability to
environmental change (i.e. decrease ecosystem resilience). Many experiments show that
influence of biodiversity loss on ecosystem functioning is often comparable to direct influence of
other anthropogenic pressures®*?’. Further analyses of multiple experiments reveal that these
biodiversity effects increase over time®, with increased spatial scale ¥, and when multiple
functions are considered simultaneously®®>'.
However, at regional and global scales®, relatively little is known quantitatively about how
much and what kinds of biodiversity can be lost before key aspects of ecosystem functioning are
eroded (O3). The extent and rate at which biodiversity losses are pushing ecosystems towards
critical tipping points in to undesirable and irreversibly degraded states with decreased
functioning and dangerous reductions to ecosystem services remains a major gap in Earth system
knowledge*7 (04; Fig. 6).

Q2 - Utility: Global observations of multiple components of biodiversity and drivers of
biodiversity change are needed to tackle the urgent global biodiversity crisis and to address
the four science objectives listed above. New satellite observing technologies, currently
available but not yet deployed at scale, integrated with in situ measurements will enable
transformative progress.

Basic biodiversity science and applied conservation efforts have been slowed by the scarcity and
quality of available biodiversity data'®*®. Currently available global data on biodiversity are
grossly incomplete and non-representative taxonomically, geographically, environmentally,
temporally, and functionally. While datasets of species traits and their connection to function
continue to grow>**, local observations of species traits remain highly insufficient. For example,
on average only around 2% of vascular plant species have any trait measurements available at
the regional scale and an even smaller proportion in the species-rich tropical regions® (Fig. 7).
Data on other biodiversity attributes such as species occurrence, abundance, and biomass hold

similar biases®*'.

These data gaps and biases are exacerbated by even scarcer information on temporal changes in
biodiversity. Even in areas in which current data are relatively complete, widespread biodiversity
change driven by anthropogenic pressures is rapidly outpacing incremental gains afforded by
laborious in situ biodiversity sampling®. Furthermore, existing “global” data has not been
collected consistently or systematically, but is instead compiled post hoc from thousands of
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disparate research activities, often not designed to address long-term trends or large-scale
patterns*.

As a response to these challenges, the Group on Earth Observations Biodiversity Observation
Network (GEO BON) has proposed a candidate set of Essential Biodiversity Variables® (EBVs;
Fig. 8) — grouped broadly into species traits and populations, ecosystem structure and function,
and genetic and community composition. These EBVs are modeled after the fifty Essential
Climate Variables® (ECVs) that guide the implementation of the Global Climate Observing
System (GCOS), which supports the work of the United Nations Framework Convention of
Climate Change and the Intergovernmental Panel on Climate Change (IPCC). Similarly, the goal
of the proposed EBVs is to support the equivalent body to the IPCC for biodiversity, the
recently-established Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services* (IPBES) and several multilateral international environmental agreements, most
notably enabling progress towards the Aichi Biodiversity Targets® set by the international
community through the Convention on Biological Diversity (CBD).

Space-observable EBVs have been identified by multiple working groups™’ ¢, Space agencies
have coordinated for decades through the Committee on Earth Observation (CEOS) to produce
the Climate Data Records from which ECVs are derived. The biodiversity community is now
strongly urging the GEO secretariat to support the definition of a final set of agreed upon
space-observable EBVs and for space agencies to coordinate through CEOS to develop the
missions and data products necessary to monitor EBVs’.

Some of these space-observable EBVs will overlap directly with ECVs, (e.g. Leaf Area Index),
and some are already being monitored from space’. Other EBVs could be measured from space
(or inferred from space-based measurements with additional modeling and/or in situ data) in the
near future with advanced observing technologies that are mature and available but not yet
deployed at scale. For example, ecosystem structure and aboveground vegetation biomass will
soon be measured globally using space-based lidar (GEDI) and radar observations (NISAR).
Further discussion of these biodiversity targets can be found in RFI-2 response 3D Vegetation
Structure and Dynamics (Lavalle et al). Other RFI-2 responses addressing biodiversity science
targets include Monitoring Coastal and Wetland Biodiversity from Space (Muller-Karger et al.),
Global Terrestrial Ecosystem Functioning and Biogeochemical Processes (Townsend et al.),
Ocean Ecosystems (Behrenfeld et al.), and Coral Reefs: Living on the Edge (Hochberg et al.).

For the remainder of this RFI response, we will focus on the utility, key requirements, and
affordability of measuring the functional diversity of terrestrial plants, one of many
Essential Biodiversity Variables. Jetz et al.® have recently identified global spaceborne
measurements on the functional composition and diversity of plant communities (O1) as an
essential foundation (Fig. 9) for monitoring biodiversity change (02), understanding the
functioning of ecosystems (0O3), and predicting and managing the consequences of future
biodiversity change (04).

Plant functional biodiversity encompasses the wide-ranging variation in physiological,
morphological and chemical properties (known in the ecological literature as functional traits) of
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plants. These include the concentration of metabolites and nonstructural carbohydrates in leaves,
or the ratio of leaf mass to area, which are related functionally to plant processes like carbon and
water uptake, nutrient cycling, and defense against pests and environmental stresses (see Table 1
for a list of functional traits observable from space). These functional properties vary within and
among individuals (e.g., based on the position of a leaf on a plant and its exposure to sunlight, or
the variability among trees in a forest) to populations, species, and communities, and may be
measured at any of these levels of biological organization®.

With increasing spatial scale (i.e. coarser spatial resolution of measurement), the retrieval of
functional properties will increasingly represent the aggregate properties of many individuals and
species, including, for example the functional biodiversity of whole plant communities. Such
aggregate “functional diversity” metrics characterizing the breadth of functional properties of a
group of organisms are known to be strongly associated with taxonomic***’ and phylogenetic®*>!
measures of biodiversity and their potential decrease under habitat loss®*. Plant functional traits
are strongly associated with the distribution and abundances of animals™* (Fig. 10), fungi®, and
soil microbes®®!. Finally, the close links between plant functional biodiversity and ecosystem
processes such as carbon, water and energy exchange enabling a more mechanistically detailed
and predictive representation of the terrestrial biosphere in Earth system models®*®,

Q3- Requirements: We understand the key requirements for observing the diversity of
terrestrial plant functional traits from space based on mature algorithms developed from
airborne studies conducted across multiple biomes®’ (Fig 11).

The the underlying physical observable for retrieving plant functional traits from space are
atmospherically corrected surface reflectances covering 450-2450 nm with <=10 nm spectral
resolution. This is the the spectral range that is sensitive to key plant chemical, physiological,
and leaf to canopy light-scattering characteristics. Specific portions of the spectrum are also
required for atmospheric correction. The visible portion of the spectrum 450 to 700 nm and the
oxygen A-band centered at 760 +20 nm are required for aerosol estimation. Water vapor
information is derived from the two water absorptions at 940 +80 nm and 1150 £100 nm. Cirrus
cloud assessment and correction information is derived from the strong water bands between
1380 +20 nm and 1875 £30 nm.

Radiometric performance requirements (0 to max vegetated surface signal, > 90% accuracy, and
> specified SNR) are driven by the range of radiances and required SNR necessary to retrieve
the physical trait parameters with sufficient precision and accuracy to meet or exceed ecosystem
model sensitivity and atmospheric correction requirements with demonstrated retrievals from
airborne imaging spectrometer measurements with known SNR performance. To bracket the
range of ecosystems observed, at-sensor radiance has been modeled for an upper-mid latitude
conifer and tropical broadleaf canopy (Fig. 12). Identification of narrowband features associated
with leaf absorption features requires SNR commensurate with the depth of spectral features
(Fig. 12). Geometric requirements include £90 m surface location to ensure alignment with
global DEM data for correction of illumination and bidirectional reflectance effects.
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The spatial resolution requirement is <40 m in order to capture individual stands (groups of
trees of a common species) within forest ecosystems and maximize the diversity observed while
allowing global coverage. Spatial sampling requirements are derived based on ecosystem scale
analyses and spatial tests of sequentially degraded aircraft data collected at 1-5 m. Multi-scaled
analyses ® show that large-scale plant trait variability is well resolved with 20-40 m? data,
capturing the natural variability in vegetation across landscapes while minimizing intra-canopy
effects (i.e., the pixel is a canopy, not part of a canopy).

The baseline spatial coverage and temporal frequency requirement is at least one cloud-free
measurement in the peak growing season for >90% of the Earth’s vegetated terrestrial surface per
year. Cloud-free views allow retrieval of the full set of surface spectral reflectance. The baseline
observation duration requirement is driven by the need to detect changes in the retrieved trait
parameters to track changes in biodiversity over time.

Q4 - Affordability: The measurements can be achieved affordably in the decadal
timeframe, due to investments in response to global terrestrial/coastal coverage missions
outlined in the 2007 NRC Decadal Survey®” and NRC Landsat and Beyond report™ and
other initiatives. These measurements would build on a legacy of airborne and space
instruments including airborne: AIS”', AVIRIS, and AVIRIS-NG” and space: NIMS™, VIMS”,
Deep Impact™®, CRISM”’, EO-1 Hyperion”™", M3* and MISE, the imaging spectrometer now
being developed for NASA’s Europa mission.

NASA-guided engineering studies in 2014 and 2015 show that a Landsat-class VSWIR (380 to
2510 nm @ <10 nm sampling) (Fig. 13) imaging spectrometer instrument with a 185 km swath,
30 m spatial sampling and 16 day revisit with high signal-to-noise ratio and the required
spectroscopic uniformity can be implemented affordably for a three year mission with mass (98
kg), power (112 W), and volume compatible with a Pegasus class launch or ride-share (Fig. 14).
Cloud probability analysis completed using the MODIS Terra and Aqua cloud products
following Mercury et al.*' shows shows the baseline spatial coverage and temporal frequency
measurement requirements can be met.

The key for this measurement is an optically fast spectrometer providing high SNR and a design
that can accommodate the full spectral and spatial ranges*. A scalable prototype F/1.8 full
VSWIR spectrometer ¥ has been developed, aligned, and is being qualified (Fig. 15).

Data rate and volume challenges have been addressed by development and testing of a lossless
compression algorithm for spectral measurements®**¢, This algorithm is now a CCSDS standard.
With compression and the current Ka band downlink offered by KSAT and others, all
terrestrial/coastal measurements can be downlinked (Fig. 16).

Algorithms for calibration” and atmospheric correction®”** of large diverse data sets have been
benchmarked as part of the HyspIRI preparatory campaign® as well as for the AVIRIS-NG India
and Greenland campaigns and elsewhere. The data algorithms necessary for achieving the
required plant trait measurements are mature and have been tested over large diverse
datasets (summarized in Table 2). To enhance affordability and accelerate measurement
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availability, there is good potential for international partnerships.
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Ecosystem services
Global 2 1 Biodiversity :

the variation of life on Earth Provisioning of goods

change drivers

food medicines
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invasive species genotypes number/range wood minerals
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ecosystems arrangement fresh water
overexploitation interactions
Cultural services
education and inspiration
recreation and tourism
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Figure 1: Human activities are driving rapid changes in global biodiversity with profound effects
on ecosystem functioning and the ecosystem services on which human society relies. In the
biodiversity box, the components of biodiversity (genotypes, species, functional traits, and ecosystems)
can each be measured in multiple ways (number/range, abundance, composition, spatial arrangement,
and the interactions between biological units) as explained in Fig 2. The red numbers correspond to our
four science objectives. Adapted from Diaz et al (2006) and Millennium Ecosystem Assessment (2005).
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Figure 2: The Different Metrics of
Biodiversity.

All of these biodiversity metrics can be
affected by human intervention
(arrows), and in turn have repercussions
for ecosystem properties and services.
Symbols represent individuals or
biological units. Symbols of different
shades represent different genotypes,
species, functional traits, or
ecosystems.

Image from Diaz et al (2006).



Extinctions per thousand species per millennium
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Figure 3: Current extinction rates are ~100 times higher than the long-term fossil
record and projected to increase in the future. These rates could be severe enough to match
the extinction magnitudes of the five mass extinctions from Earth’s deep past in as little as
three centuries (Barnosky et al. 2011) Image from the Millennium Ecosystem Assessment

(2005).
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Figure 4: The global Living Planet Index shows a decline of 52 per cent between 1970 and 2010.
This suggests that, on average, vertebrate species populations are about half the size they were 40
years ago. This is based on trends in 10,380 populations of 3,038 mammal, bird, reptile, amphibian
and fish species. The white line shows the index values and the shaded areas represent the 95 per cent
confidence limits surrounding the trend. Image from McClellan et al. (2014).



Ecosystem

function
(resource capture,
biomass production,
decomposition, nutrient
recycling)

Biological diversity
(variation in genes, species,
functional traits)

Figure 5: Consensus findings synthesized from hundred of biodiversity manipulation
experiments show that biodiversity loss tends to degrade ecosystem functioning (red curve,
grey shaded area represents 95% confidence intervals, red dots represent the maximum and
minimum values of the most or least productive species grown alone in monocultures) and
ecosystem stability (Cardinale et al., 2012). Remotely-sensed biodiversity observations are need to

characterize these relationships at regional and global scales to address Objective 3. Image from
Cardinale et al. (2012).
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Figure 6: Global observations of biodiversity and ecosystem functioning are necessary to
address Objective 4 to determine the future likelihood and potential consequences of of
biodiversity change with an emphasis on identifying critical tipping points in Earth’s life
support systems. Adapted from Mace et al (2014) and Rockstrom et al (2009).
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Figure 7: The data gap in regional trait measurements of terrestrial plant species (Jetz et al
2016). The graph shows the latitudinal variation in the number of vascular plant species for which at
least one trait has been measured regionally (open boxes) in relation to all species expected for that
region (filled boxes). Regions here are defined as 110x110 km grid cells (n=11,626); expected richness
data is from Kreft and Jetz (2007) and regional trait data from the TRY plant trait database (accessed
June 2015, Kattge et al 2011). Regions are analyzed at the grid cell level and their variations are
summarized in 5 degree latitudinal bands. On average, only 2% of species have any such regional
measurements, and the data gap is largest in the tropics. This limits our understanding of both
biodiversity and ecosystem function and services.



Scenarios for biodiversity
& ecosystem services (e.g. for IPBES)

Figure 8 GEO BON is developing
Essential Biodiversity Variables (EBVs),
which are a minimum set of measurements
to capture major dimensions of
biodiversity change, complementary to one
another and to other environmental change
observation initiatives. EBVs cover the
different dimensions of biodiversity
change. They are temporally sensitive by
having the ability to detect change. Most
important, they are relevant, scalable,
feasible and biological. Image from the
GEO BON website (geobon.org).
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In situ biodiversity observations

Figure 9: The Global Biodiversity Observatory
envisioned by Jetz et al (2016) - Space-based
imaging spectrometer sensors capture global spatial
data on key functional traits in time, including leaf
mass per area (LMA), nitrogen (N), and non-
structural carbohydrates (NSC) and others (Table 1).
Other space-based sensors (such as LiDAR and
radar) may also contribute measurements of other
essential biodiversity variables (see RFI-2 response
‘3D Vegetation Structure and Dynamics’ by Lavalle
et al). An informatics infrastructure and appropriate
modelling techniques connect this information with
trait, evolutionary and spatial  biodiversity
information collected in situ worldwide at different
spatial scales and levels of biological organization.
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Figure 10: The spatial distribution of plant diversity is highly correlated with animal diversity. These
two plots show the (left) latitudinal pattern of plant (dashed) and mammal (solid) species richness for 5
degree latitude bands and (right) the same relationship plotted as a regression. Images from Midgley et
al 2010.
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Figure 11: Conceptual diagram illustrating a mature plant trait retrieval algorithm, capable of retrieving
many plant traits over multiple biomes using imaging spectroscopy (Singh et al 2015).
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Figure 12: (left) Top of atmosphere radiance for a reference tropical broadleaf and a
high latitude conifer. (right) Corresponding SNR that is consistent with the
measurements by AVIRIS-C and other airborne imaging spectrometers that have been

used to retrieve the plant traits of interest.
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Figure 13: (left) Contiguous spectral coverage from 380 to
2510 nm of the F/1.8 VSWIR Dyson showing overlap with
LandSat and Sentinal-2 bands. (right) Signal-to-noise ratio
for 30 m sampling with F/1.8 VSWIR Dyson imaging
spectrometer.
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Figure 14: (left) Opto-mechanical configuration for a high SNR F/1.8 VSWIR
imaging spectrometer system providing 185 km swath and 30 m sampling.
(center) Imaging spectrometer with a spacecraft configured for launch in a
Pegasus shroud for an orbit of 429 km altitude, 97.14 inclination to provide 16
day revisit for three years. (right) Orbital altitude and repeat options. An
altitude of 429 km with a fueled spacecraft supports the three year mission
with the affordable Pegasus launch. Higher orbits require a larger launch
vehicle.
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Figure 15: (left) Design of F/1.8 VSWIR Dyson covering the spectral range
from 380 to 2510. (right) Developed, aligned and qualified Dyson with
CHROMA full range VSWIR detector array.
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Figure 16: (left) Global illuminated surface coverage every 16 days. (right) On-board data
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Svalbard and Troll stations. Oceans and ice sheets can be spatially averaged for downlink.



Table 1: List of key plant functional traits that can be estimated from imaging spectroscopy.

+
Functional Example of functional
1 Trait P Example Citations
characterization role
Foliar N (% dry mass or area based) Critical to primary metabolism (e.g., | Martin et al. 2008, Singh et al. 2015
Rubisco),
Foliar P (% dry mass) DNA, ATP synthesis Asner et al. 2015
Sugar (% dry mass) Carbon source Asner & Martin 2015
Starch (% dry mass) Storage compound, carbon reserve | Matson et al. 1994
Primar -
: y Chlerophyll-total (ng g ') Light-harvesting capability Zhang et al. 2008
Carotenoids (ngg') Light harvesting, antioxidants Datt 1988
Other pigments (e.g., anthocyanins; ngg') Photoprotection, NPQ van den Berg & Perkins 2005
Water content (% fresh mass) Plant water status Gao 1996
Leaf mass per area (g m~) Measure of plant rescurce Singh et al. 2015
allocation strategies
Fiber (% dry mass) Structure Singh et al. 2015
Physical -
Cellulose (% dry mass) Structure Singh et al. 2015
Lignin (% dry mass) Structure Singh et al. 2015
Vemax (umel m?s') Rubisco-limited photosynthetic Serbin et al. 2015
capacity
Metabolism Photochemical Reflectance Index (PRI) Indicator of non-photochemical Gamen et al. 1992; Asner et al. 2004
quenching (NPQ) and
photosynthetic efficiency,
xanthophyll cycle
Bulk phenolics (% dry mass) Stress responses Asner et al. 2015
Secondary

Tannins (% dry mass)

Defenses, nutrient cycling

Asner et al. 2015

‘Categories of functional characterization are for organizational purposes enly: Primary refers to compounds that are critical to photesynthetic
metabolism; physical refers to non-metabolic attributes that are also impertant indicators of photosynthetic activity and plant rescurce
allocation; Metabolism refers to measurements used to describe rate limits on photosynthesis; and Secondary refers compounds that are not
directly related to plant growth, but indirectly related to plant function through associations with nutrient cycling, decomposition, community
dynamics, and stress responses.



Algorithm

Townsend,

Data products

Remote

LMA, N/N15, C, Chl,

Where applied?

Upper Midwest (WI, MN, MI),

measurement of functional trai

Citations

Singh et al. 2015;

Estimated
Maturity

richness and
Shannon index

Baltic Sea

Spectral classification and LiDAR ecosyste

structure

Singh, and fiber, lignin, Central and Northern Serbin et al. 2015
Serbin cellulose, tannins, Appalachians (MD, PA, WV,
PLSR phenolic glycosides, VA, NY), California
Vemax
Carnegie LMA, leaf and Amazonian tropical forest; Asneretal. 2015 | TRL5-7
PLSR canopy water, C, N, | Mesoamerican tropical forest;
P, NSC, lignin, Hawaiian tropical forests;
phenols, and North American temperate
multiple cations forests and shrublands
APEX Chl Fluorescence, Various temperate forest Schaepman et al. TRL5
1D radiative model ecosystems in Europe 2015; Damm et al.
inversion for Chl, 2015; Schweiger
LAI, pigments, leaf etal. 2015
water
Feret and Species alpha Amazonian tropical forest; Feret and Asner TRL 4
Asner richness and beta Hawaiian tropical forest; 2015
compositional California temperate forest
diversity and shrubland ecosystems
Hérkul et al Species alpha Marine benthic ecosystem in | Hérkul et al. 2013 TRL 4

2016;

MESMA Plant functional Many terrestrial and marine Dennison et al. TRL6
types and benthic | benthic ecosystems (Atlantic, | 2003; Hochberg et
cover types (e.g. Pacific, Indian Oceans) al 2003; Goodman
coral, sand, algae) and Ustin 2007;
Roth et al 2015
PHYDOTax Chl-a (all taxa), Monterey Bay, Santa Barbara Palacios et al. TRL 5
Plankton functional Channel 2015; Palacios et
types (diatoms, al. 2012.
dinoflagellates,
cyanobacteria)
3-D Vegetation vertical Many terrestrial ecosystems | Tang etal 2012; TRL 6-7
ecosystem | structure, landscape Montesano et al
structure heterogeneity, 2015; Tang et al

Table 2: Overview of
biodiversity data algorithms
for marine and terrestrial
ecosystems and their
maturities.



