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Section 1. Climate change has a disproportionate impact on Earth’s cryosphere due
to the widespread existence of snow and ice near its melting point. Decades of
satellite, airborne, and ground observations clearly show increased melting of
glaciers and ice sheets, declines in sea ice, and decreasing spring snow cover. This
increased melting of cryosphere cover makes Earth more absorptive of sunlight
(snow-albedo feedback) and moves enormous volumes of stored water from frozen
state to liquid, raising sea level and changing water availability to large
populations. However, the distribution and quantification of forcings controlling
this accelerated melting are poorly known.

Atmospheric warming from radiative forcing by anthropogenic increases in
greenhouse gases (GHG) (~3 W m™) is contributing to this acceleration. However,
the proportion of this contribution is uncertain because of the large uncertainties in
the controls on the dominant contributor to annual melt - absorbed sunlight - itself
modulated by albedo (Fig. 1). Despite this crucial role of albedo and solar radiation
in snow and ice melt, sparse global measurements have kept us from understanding
the global distribution of controls on albedo, grain size (GS), and radiative forcing
by dust/black carbon (BC) (Fig. 2), and from accurately modeling melt processes
worldwide (Fig. 3). In some regions where robust radiation and EB measurements
are available, we know that melt rates of seasonal snow and supraglacial snow are
dominated by radiative forcing by impurities (1-4). Such an understanding is crucial
to determining cryosphere melt in the present, projecting its future behavior, and
understanding the already powerful changes observed that are not attributable to
anthropogenic warming (5). This critical need leads to the overarching goal:

QESO: Determine the controls on absorbed solar radiation in snow and ice by
grain size variation and radiative forcing by dust and black carbon to within daily
mean of 3 W m™.



Current general circulation models (GCM) and regional climate models (RCM)
that include snow/ice radiative transfer modeling suffer from poor knowledge of the
global distribution of grain growth rates and deposition of dust and BC. With well-
constrained GCMs/RCMs, we will begin to answer fundamental questions related
to past, current and coming changes in the global water cycle and global climate:

1. What is the contribution of regional warming (including its influence on
snow grain size growth) and radiative forcing by dust and black carbon
to present day snow and ice melt?

2. How will climate-driven and population-driven increases in desertification
and forest fires lead to accelerated snow and ice melt and perturbation of
the global water cycle and regional water supplies?

3. How will perturbations of snow and ice albedo impact mountain and ice
sheet glacier mass balance?

4. For how long would reduction of radiative forcing by dust and BC mitigate
against increased melt and sea level rise from climate warming?

Importance of this Science Target to Themes

By addressing the albedo controls on snow heating and melting across the
global cryosphere, we will markedly advance two of the five 2017 Decadal Survey
Themes: (I) Global hydrological cycles and water resources, and (IV) Climate
variability and change, seasonal to centennial. Understanding the controls on snow
and ice melt is fundamental to understanding the impacts of the anthropogenic
experiment that has been playing out across the Anthropocene.

The IPCC 5™ Assessment Report indicates that uncertainties in aerosols continue
to contribute the largest uncertainty to the total global RF estimate, part of which
comes from the perturbation of cryosphere albedo and only incomplete assessment
of BC relative to mineral dust (6). BC impacts on cryosphere albedo are estimated
by the IPCC report to be the third largest emitted radiative forcing but with the
largest uncertainties. However, in the Cryosphere chapter, it is acknowledged that
our understanding of snow albedo changes is extremely limited (7). The World
Bank suggests that mitigation of black carbon from snow and ice could reduce
warming in the Arctic and Himalaya by more than 1 °C and 25% reduction in
seasonal snow cover loss by 2050, but with marked uncertainty due to poor
measurements and inadequate treatment of coincident dust (8).

The NRC report on Himalayan Glaciers (9) called explicitly for “improved
monitoring of the amount of black carbon on glaciers and how much it affects the
albedo”. Even back in 1989, the NRC recommended that the imaging spectrometer
HIRIS (deselected from EOS) was needed to provide albedo to within 2% and the
ability to resolve radiative forcing by impurities and changes in GS (10).

Advancing the Hydrological Sciences and Climate Change/Variability Themes
Understanding controls on snow heating and snowmelt rates with quantitative
energy balance modeling, constrained by these measurements, will bring GCMs
and RCMs to the ability to address physical processes explicitly. In turn, we will
markedly advance the Global Hydrological Cycles and Water Resources theme by



understanding controls on snowmelt runoff, controls on regional heating through
snow-albedo feedback and impacts on monsoonal strength due to seasonal
perturbation of heating. Likewise, we will markedly advance the Climate Variability
and Change theme by understanding melt of the climatic impactful snow cover
across prairies, tundra, taiga, and sea ice, as well as modulation of the energy and
mass balance of ice sheets, mountain glaciers, and by their fluxes controls on sea
level rise.

Section 2. To achieve the science target, the controls on variation in snow and ice
albedo by GS variation and radiative forcing by impurities must be measured
spectroscopically with the accuracy and precision for which we understand the
distribution of present GHG warming (~3 W m?). With these quantitative retrievals,
mesoscale to global scale climate models and snowmelt models can be constrained
with physically correct GS variation and present-day radiative forcings by dust and
BC (Fig. 4). In turn, the relative contributions to cryosphere loss and changes in
snowmelt runoff of changes in climate and aerosol loading can be forecast with
much lower uncertainties (Fig. 3), in turn reducing uncertainties in the climate
sensitivity control on the powerful snow-albedo feedback.

Current GCMs and RCMs that include snow and ice radiative transfer modeling
suffer in particular from poor knowledge of the global distribution of grain growth
rates and deposition of dust and BC (11-16). With these spectrally derived forcings,
we can determine the time series of daily and cumulative radiative forcings from
GS variation and radiative forcing by dust and BC (Fig. 5). We will also constrain
the National Center for Atmospheric Research Coupled Earth System Model (CESM)
for global cryosphere and the Weather Research and Forecasting (WRF) model for
the mountain cryosphere to understand the albedo forcing contributions to melting
of snow and ice relative to other components of the energy balance and to
markedly decrease melt uncertainties (Fig. 3).

The CESM and WRF models have advanced capacity to simulate physical
processes governing changes in snow albedo by simulating radiative transfer with
the Snow, Ice, and Aerosol Radiation (SNICAR) model (13, 17). The SNICAR model
has been shown to accurately model snow reflectance (18) and the radiative
influence of dust and BC in snow (19-21), but only when the physical state of the
snow is well constrained (22, 23). However, GS growth rates are poorly known
around the global cryosphere (16). Impurity depositions are likewise poorly known,
coming largely from coarse and insufficiently validated GCM simulations (14, 24).

We will incorporate a high-spectral-resolution version of SNICAR into CESM
and WRF to simulate global spectral albedos of snow and ice that are directly
comparable to the measurements. These comparisons give immediate
understanding of the magnitude of the uncertainty error in our current estimates of
spectral albedo, net solar radiation, and its contribution to melt. GS and impurity
radiative forcing measurements then constrain SNICAR in each model (GCM/RCM)
in the respective modeling domains (global and mountain regions). GS is used as a
direct insertion to the model. The impurity radiative forcing is a constraint that



forces us to adjust model aerosol deposition fields, impurity optical properties, and
meltwater retention efficiencies.

Current and planned cryosphere missions, such as ICESat-2, IceBridge, GRACE,
NISAR, and others, focus on how much snow and ice are changing, but not why.
The direct measurement of controls on snow albedo described here will address
why snow and ice are changing by capturing the rapid changes in GS and radiative
forcing by impurities, and in turn constraining our understanding of the
contributors to melting and ensure that models properly represent processes for
global climate and water availability projections. Changes in snowfall themselves
are addressed in the RFI#2 response on snow water equivalent measurements (25).

Section 3. In order to address the QESO, we must retrieve changes in GS and
radiative forcing by impurities with equivalent changes in solar energy available for
snowmelt within £3.0 W m™ daily mean.

Capability and performance requirements:

Fig. 5 shows proposed spectra (top) and cumulative radiative forcings from
impurities and GS change (bottom) that will be available for every pixel from these
measurements. Spectral sampling of <20 nm, response function width <20 nm, and
<5% spectral calibration uncertainty are required to discriminate changes in
radiative forcing and GS to within the required instantaneous 7.5 W m™ or daily
mean 3 W m? (Fig. 6).

The QESO requires observation of radiometrically unsaturated, spectral
radiance reflected from snow and ice surfaces in the wavelength range 400 to 2350
nm. These acquisitions must span gradients in snow and ice heating and melting
(Fig. D-6). The instrument functional requirement for spectral range (400-2350 nm)
supports the observable measurement requirements by spanning the range of
wavelengths covering the absorption features shown in Fig. 5, the atmospheric
features used in the atmospheric correction (26), and facilitating the spectral
mixture analysis to screen out mixed pixels (27). These acquisitions must span
gradients in snow and ice heating and melting (Fig. D-6). These gradients are
spanned within swath width that must be greater than 25 km to accommodate
mountain massifs (28).

The instrument functional requirement for radiometric range (1.5x Lambertian
reflectance) avoids saturation of measured radiance from snow. Radiometric
calibration of <10% uncertainty enables radiative transfer model-based
atmospheric correction. The spatial sampling requirement (<50 m) supports the
observable measurement requirements because it addresses spatial structure
changes at ~40-m-length scales (29), ensures sampling homogeneous snow pixels,
and minimizing spectral mixtures that occur at coarser spatial scales in rough
mountain terrain. The FOV requirement also allows aggregation of areas inward of
ice sheet perimeters where spatial gradients are less steep.

Fig. 7 shows definitive regions of the cryosphere with the parameter space of
direct albedo reduction (impurities from clean to dirty) and grain growth



(atmospheric temperature from colder to warmer). These regions must have
approximately weekly acquisitions during accumulation and ablation seasons to
address changes in heating and melting (30). The requirement for illumination
geometry, <70° local SZA, is driven by numerical stability of radiative transfer
modeling of snow reflectance and the need to allow for atmospheric/topographic
conversion of spectrometer radiances to directional reflectance. The key
requirements to achieve the science target are summarized in Table 1.

Section 4. These measurements can be achieved affordably in the decadal
timeframe, due to previous investments in response to global terrestrial/coastal
coverage missions outlined in the 2007 NRC Decadal Survey (31) and NRC Landsat
and Beyond report (32) and other initiatives. These measurements build on a
legacy of airborne instruments such as AlS (33), AVIRIS (34), and AVIRIS-NG (35),
and space-based instruments such as NIMS (36), VIMS (37), Deep Impact (38),
CRISM (39), EO-1 Hyperion (40, 41), M3 (42) and MISE, the imaging spectrometer
now being developed for NASA’s Europa mission.

NASA-guided engineering studies in 2014 and 2015 show that a Landsat-class
VSWIR (380 to 2510 nm @ <10 nm sampling) (Fig. 8) imaging spectrometer
instrument with a 185 km swath, 30 m spatial sampling and 16 day revisit with
high signal-to-noise ratio and the required spectroscopic uniformity can be
implemented affordably for a three year mission with mass (98 kg), power (112 W),
and volume compatible with a Pegasus class launch or ride share (Fig. 9).

The key for this measurement is an optically fast spectrometer providing high
SNR and a design that can accommodate the full spectral and spatial ranges (43). A
scalable prototype F/1.8 full VSWIR spectrometer (44) has been developed, aligned,
and is being qualified (Fig. 10). Data rate and volume challenges have been
addressed by development and testing of a lossless compression algorithm for
spectral measurements (45-47). This algorithm is now a CCSDS standard (48). With
compression and the current Ka band downlink offered by KSAT and others, all
terrestrial/coastal measurements can be downlinked (Fig. 11).

Efficient and accurate software for snow albedo properties is used in an
operational framework of the NASA Airborne Snow Observatory (30), based on two
decades of algorithm development and validation on data from AVIRIS (27, 49-59).
These products presently meet the data requirements discussed above but the
spatial and temporal measurements needed for the global cryosphere are
logistically impossible from aircraft.

Measuring from space is the only practical way to provide this global view of
the cryosphere. For example, in summer 2015, NASA’s airborne AVIRIS-NG
acquired data in northwest Greenland in support of ICESat-2 preparation, taking
three weeks to acquire approximately 19,000 km” or only about 5% of the area of
the Greenland Summit (Fig. 7), and at various times of the day with varying cloud
conditions. The revisit coverage of multiple climate zones and multiple elevation
gradients provides the data needed to regionally characterize snow GS and
radiative forcing impurities, and in turn their control on snow heating and melting.
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sites show that the complexities of melt energy are dominated at all latitudes by
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Fig. 4 Determine snow/ice albedo changes is motivated by (a) the scientific and societal benefits of
increased understanding of the processes driving snow and ice melt and (b) the value of satellite

observations to investigate this issue and inform current models. The data are from NASA’s AVIRIS-
NG data collected over NW Greenland in summer 2015.
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Fig. 5 Time series of measured spectral evolution over entire
melt season (top), and radiative forcing calculated from that
data (bottom).
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Fig. 6 Radiative forcing requirement of 7.5 W m™ defines the
spectral resolution of 20 nm (red arrow) in the visible range
(400-900 nm) bands, which derives from the change in
wavelength divergence between clean snow and the impure
snow reflectance.
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Fig. 7 Regions of interest in which we have suggested but incomplete understanding of the
permutations of cold to warm snowpacks and clean to dirty snowpacks
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Fig. 8 (left) Full spectrum measurement from 380 to 2510 nm for science and application objectives
and providing continuity with Landsat and Sentinal-2 bands. (right) Signal-to-noise ratio for 30 m

sampling with F/1.8 VSWIR Dyson imaging spectrometer for a range of reference radiances. The
measurement will not saturate at full Lambert radiance.
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Fig. 9 (left) Opto-mechanical configuration with one telescope feeding two field split wide swath
F/1.8 VSWIR Dyson spectrometer providing 185 km swath and 30 m sampling. (center) Imaging
spectrometer with spacecraft configured for launch in a Pegasus shroud for an orbit of 429 km
altitude, 97.14 inclination to provide 16 day revisit for three years. (right) Orbital altitude and
repeat options showing an altitude of 429 km with a fueled spacecraft supports the three year
mission with the affordable Pegasus launch. Higher orbits are viable with a larger launch vehicle.
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Fig. 10 Design of a wide swath F/1.8 VSWIR Dyson covering the spectral range from 380 to 2510.
(right) Dyson imaging spectrometer in qualification that uses a full spectral range HgCdTe detector
array.
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Fig. 11 (left) Global illuminated surface coverage every 16 days. (right) On-board data storage

usage for illuminated terrestrial/coastal regions with downlink using Ka Band (<900 mb/s) to KSAT

Svalbard and Troll stations. Oceans and ice sheets can be spatially averaged for downlink.
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Table 1 Science Traceability Matrix (STM) shows the flow from Science Themes through Objective
to Physical Parameters and the Observable and requirements..

L . . Mission
Scientific Measurement Requirements Instrument Requirements Requirements

Science
Targets Physical Observable and its | Parameter | Requirement Requirement
Parameters Requirements Performance
Spectral 400-2350 nm
range L
Snow and ice spectral (radiative
albedo in 400- forcing; clouds;
2350 nm spectral Visible/shortwave mixed
range with 30-nm infrared radiance rqck/snow
spectral resolution by | spectra, 400-2350 pixels)
t;ndersianld 0.03 nm Spectral <20 nm
Earth's sr?ow Determine the Spectrally-lntggrated o 20-nm sampling I Coverage:
and ice in controls on  SNOW albedo in the at 400.—990 nm >90% probability
high latitude  absorbed range 0.3- for radiative forcing - of approximately
'gd h? 'hU ©  colar radiation 09 Unitiess, by 0.015  due to dustand BC SNR >32 (Visible) weekly
and hi ly .
elevati%ns in snow and . . >158 (NIR) acquisitions during
ice by grain Snow grain radius: e 30-nm sampling - accumulation
THEMES:  Size variation 50-2000 um, by 20 at 980-1070 nm (specific bands (heating) and
) Global  and radiative MM for snow grain size available) ablation (melting)
hydrological  forcing by S seasons. Pointing
C}{cles éqnd dust and black Solar at-surface o 20-nm sampling rRa?](:;gmetnc I1_;35m>;ertian capability required.
water carbon to radiative forcing by at 740-780 nm Il Lighting:
resources  Withindaily  dust/BC/organics for oxygen.A-band (snow HDRF Imaging only when
mean of 3W by <7.5W m? atmospheric never exceeds | ith anal
i i instantaneous, from correction 1.5L) solar zeniih ange
(V) Climate ™ (instantaneous, fro , <70 deg
variability which daily mean is . .
and change, determined) o 20-nm sampling Spatla_l <50 m M. Duration:
seasonal to at860-1020 nm  sampling (scale of dust, Stable for > 5 years
centennial In representative. and carbon content
areas from polar ice 1050-1250 nm spatial
sheets, tyndra/taiga for watgr vapor variability)
snow, Midlatitude corrections
glaciers and snow, Swath 95 km
equatorial glaciers )
(size of

mountain glacier

regions)
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