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Summary

Terrestrial vegetation is dynamic, expressing seasonal, annual, and long-term changes in
response to climate and disturbance. Phenology and disturbance (e.g. drought, wildfire, and
insect outbreak) can cause a transition from photosynthesizing “green” vegetation to non-
photosynthetic vegetation (NPV). NPV includes dead and senescent vegetation, plant litter, and
non-photosynthesizing branch and stem tissues. NPV cover, measured as the fractional
abundance of NPV by area, is a critical and poorly quantified constituent of natural and
agricultural ecosystems. Measurements of NPV cover can quantify vegetation response to
seasonal and long-term drought, mortality caused by disturbance events, wildfire impacts, crop
residue cover and susceptibility to erosion, and forage conditions. With increasing temperature
and increasing precipitation variability, NPV dynamics will be an essential metric of climate
change impacts on vegetation. To advance Earth science and applications under Theme lll, this
paper proposes a measurement objective to “map seasonal NPV cover for all vegetated
ecosystems globally at a spatial resolution required for quantifying stand/patch scale variation
(£30m).”

NPV cover can be measured using lignin and cellulose absorption features in the shortwave
infrared (SWIR), over a range of 2000-2450 nm. Measurements currently used for quantifying
terrestrial ecosystem processes dominantly rely on remote sensing of photosynthesizing
vegetation (e.g. NDVI and related indices) and cannot fully resolve lignocellulose absorption
features, making it difficult to separate NPV cover from background soil cover. Current imaging
spectrometer technology is capable of resolving lignocellulose absorption features required for
mapping NPV cover. Our measurement objective can be achieved at 30 m spatial resolution
using an imaging spectrometer with a spectral resolution < 15 nm, a 185 km swath, and a 16-
day revisit period. NASA-guided engineering studies have confirmed that a mission with these
characteristics can be affordably implemented, a prototype instrument has been developed,
and multiple airborne imaging spectrometer campaigns have tested the data processing
algorithms needed for a global NPV mapping mission.



1. Science and Application Target: Non-Photosynthetic Vegetation (NPV)
Measurements used for quantifying terrestrial ecosystem processes, mapping land cover
change, and modeling global change are almost exclusively based on remote sensing of
photosynthesizing “green” vegetation. Current measurements, including multiple Essential
Climate Variables (ECV), do not capture NPV, representing plant litter, senescing foliage,
branches, and stems (Roberts et al, 1993; Nagler et al., 2000). Plant biochemical constituents
comprising NPV include lignin and cellulose, which are the most abundant molecules produced
by the photosynthetic activity of terrestrial vegetation. Collectively and individually, NPV
components play a crucial role in terrestrial ecosystems, directly affecting carbon and nutrient
cycling, erosion, and wildfire danger. Large, globally relevant fluxes of carbon from live to dead
pools are strongly correlated with shifts in NPV cover. Measures of NPV are required to fully
address biochemical and functional attributes of terrestrial ecosystems captured in Earth
Science Theme Ill: Marine and Terrestrial Ecosystems and Natural Resource Management.
Using lignin and cellulose spectral features in the shortwave infrared (SWIR; 1.4-2.5 um), NPV
cover measured as fractional abundance of NPV by area is quantifiable using current
technology (Kokaly et al., 2009; Lee et al., 2015; Singh et al., 2015).

Terrestrial vegetation is dynamic, and varies on seasonal, annual, and decadal scales. Temporal
variations in climate (temperature, precipitation, and their seasonality) and disturbance affect
the relative cover of photosynthetic vegetation (PV) and NPV in terrestrial ecosystems. For
example, grasslands senesce during periods of seasonal drought, mountain pine beetle
outbreaks result in widespread mortality of pine forests, and long-term drought can result in
increased NPV in vegetation ranging from agricultural crops to native shrubs and trees.
Commonly, changes in NPV cover are inferred using vegetation indices sensitive to greenness
(e.g. NDVI and related indices). However, spectral measures that do not resolve lignocellulose
absorption in the SWIR are unable to separate NPV cover from the background substrate (soil)
(Figures 1-2). NPV cover is an important source of error in relationships between vegetation
indices and biophysical variables (Figure 3) (Van Leeuwen & Huete, 1996; Nagler et al., 2000),
and a mixture of PV and soil cover has very different implications for productivity and carbon
storage than a mixture of PV and NPV cover (Asner et al., 2003).

Changes in NPV cover are often closely related to drought. Seasonal drought can be expressed
as a change in the ratio of live to senesced foliage (Roberts et al. 1997; 2006; Elmore et al.,
2000; Okin, 2010). Increases in NPV cover over longer time scales can indicate differences in
species susceptibility to water stress (Figure 4). During the extreme drought in California,
remote sensing measurements have shown strong increases in NPV cover for more shallowly
rooted species, dependent on topography (Coates et al., 2015), as well as decreased canopy
moisture content (Asner et al., 2016). Plant pathogens or any form of disturbance that leads to
leaf shedding or senescence can be quantified by examining changes in NPV cover. Small scale
wind disturbances and associated tree mortality in the Amazon can be mapped at subpixel
scales as an increase in fractional NPV cover, and accurate estimates of these disturbance fluxes
are essential for quantifying regional carbon balance (Negrén-Juarez et al., 2011; Chambers et
al., 2013). Satellite-derived NPV metrics were also employed to quantify regional tree mortality
and canopy damage following the landfall of Hurricane Katrina in Gulf Coast forests (Figure 5;
Chambers et al., 2007).



NPV is an important component of many managed ecosystems, including agricultural and
pasture systems. In agricultural systems, plant residues represent an important source of future
organic carbon for soils and are the first line of defense against the erosive forces of wind and
water (e.g., McGregor and Greer, 1982; Karlen et al., 1994; Nagler et al., 2000; Lal et al., 2007).
After harvest, NPV (crop residue) often completely covers the soil surface, but when the soil is
tilled or NPV is harvested for feed or biofuel, NPV cover decreases (Daughtry et al., 2006; Serbin
et al., 2013). Quantification of fractional NPV cover on the soil surface after crops are planted is
crucial for monitoring soil tillage intensity and assessing the extent of conservation practices in
agricultural landscapes (Daughtry et al., 2012). Thus, managing NPV cover on soil surfaces is
often a crucial component for sustainable agronomic production (Delgado, 2010).

As a component of total ground cover, NPV is critical for effective monitoring and modelling of
catchment wide erosion processes and for the assessment of land management changes on
water quality outcomes (Karfs et al. 2009; Star et al., 2013; Beutel et al., 2014). In pastoral
systems and pastures, NPV provides valuable ecosystem services, often representing the
dominant form of carbon remaining after grazing (e.g., Herrick et al., 2005; Scarth et al., 2010;
Meyer & Okin, 2015). The ratio of live to senesced grass cover is an important measure of the
degree of degradation in pastures, with degraded pastures in the Amazon often showing a
significant increase in the ratio of senesced to live grass, as cattle preferentially consume green
foliage and leave NPV behind (Numata et al., 2007; Davidson et al., 2008). In pasture
communities that rely on episodic rainfall events, such as in arid and savanna ecosystems,
estimates of NPV cover are the only way to objectively separate grazing effects on ground cover
from those due to interannual variation in rainfall (Bastin et al., 2012).

Wildfire is a globally important ecosystem disturbance that has critical impacts on carbon and
particulate emissions. As vegetation senesces, canopy water content decreases and the
expression of lignocellulose absorption increases (Figure 6). Senescence and the “curing” of
fuels leads to increased fire danger. Fractional NPV cover is correlated with fuel moisture
content, and can be used to measure seasonal changes in fire danger (Roberts et al., 2006).
Changes in NPV cover can indicate build-up of fine fuel biomass over time (ElImore et al., 2005),
and NPV cover can also be used to map fuel types and disturbance (Jia et al., 2006). Post-fire
NPV is correlated with the presence of charred organic material (Lewis et al., 2007), can be used
to map burn severity (Van Wagtendonk et al., 2004; Veraverbeke & Hook, 2013; Veraverbeke et
al., 2014), and reveal areas of vegetation killed (but not consumed by) wildfire (Kokaly et al.,
2007; Lewis et al., 2011).

Even though NPV can represent the dominant form of aboveground biomass in many
ecosystems, is an important indicator of disturbance, and plays a key role in biogeochemical
cycles, there is currently limited capability for global and seasonal mapping of NPV cover.
To address the need for improved understanding of the role of NPV cover in terrestrial
ecosystems, we propose the following measurement objective:

Map seasonal non-photosynthetic vegetation cover for all vegetated ecosystems globally at a
spatial resolution required for quantifying stand/patch scale variation (s 30 m)



2. Utility of NPV Cover for Earth Science and Applications

Global, seasonal measurement of NPV cover will facilitate critical advances in science and
applications within Earth Science Theme Ill. Measurement of NPV cover will help quantify how
vegetation phenology responds to short-term and long-term climatic variability (Roberts et al.,
1997; Coates et al., 2015). Separation of NPV from soil is essential for understanding how
vegetation cover, forage, and fuels vary from year to year in response to climate and human
impacts (e.g. Pasto et al., 1957; Asner & Heidebrecht, 2005; Littell et al., 2009; Bastin et al.,
2012). A key benefit of NPV cover measurements will be quantification of the impacts of
disturbance on ecosystems, including drought, wildfire, extreme wind events, and insect
outbreaks (Asner & Heidebrecht, 2005; Chambers et al., 2007; Kokaly et al., 2007; Coates et al.,
2015). Changes in NPV cover can provide both the magnitude of disturbance and be used to
model the carbon implications of disturbance (Chambers et al., 2007). Seasonal NPV cover and
its seasonal and interannual variability will have utility for mapping vegetation types with
differing phenology and climatic response, such as invasive grass species (Bradley & Mustard,
2006). Separation of NPV from soil may also assist in quantifying soil organic carbon in semi-
arid or arid ecosystems (Asner et al., 2003). For agricultural lands, soil tillage intensity is
characterized by the fraction of the soil surface covered by crop residue (NPV) after planting.
Currently, no program exists for objectively and uniformly quantifying agricultural NPV cover at
appropriate spatial scales over large areas. Mapping crop residue cover will provide improved
understanding of the spatial and temporal variability of carbon fluxes and soil carbon loss due
to erosion across agricultural landscapes (Daughtry et al., 2012; Star et al., 2013; Beutel et al.,
2014). NPV cover products will be used to refine, improve, and extend applications developed
for monitoring forage conditions, like VegMachine (Figure 7) (Beutel et al., 2005). NPV cover
measurement will also assist the development of monitoring products derived from
complementary, coarser spectral and/or spatial resolution instruments like Landsat, Sentinel-2,
MODIS, and VIIRS.

3. Key Requirements

Multispectral, broadband systems such as Landsat TM/OLI and MODIS/VIIRS cannot fully
resolve lignocellulose absorption, and thus the ability of these sensors to accurately map NPV
cover has been found to be moderate or limited (e.g. Scarth and Phinn, 2000; Numata et al.,
2008; Guerschman et al., 2009; 2015; Zheng et al., 2013; Meyer & Okin, 2015). The ability to
discriminate NPV from soils is entirely dependent upon 1) sensor bands and noise, 2) the ability
to adequately remove atmospheric and BRDF effects, and 3) whether background substrates
are broadly distinct from senesced vegetation, which is true in many, but not all systems (Okin
et al., 2001; 2004; Nagler et al., 2003; Daughtry et al., 2005; Okin & Gu, 2015). Furthermore,
even in cases where NPV cover can be mapped, continuous spectra provide higher levels of
accuracy (Okin et al., 2004; Numata et al., 2008; Serbin et al., 2009a) and improve atmospheric
correction which also helps discriminate NPV from soil (Okin & Gu, 2015). Thus, SWIR
spectroscopy is required to definitively discriminate NPV from abiotic substrates (e.g. soils, rock
or man-made materials) in the presence of significant natural variation, and is essential for
measuring low percentages of NPV cover (Elvidge, 1990; Roberts et al., 1993; Daughtry, 2001;
Okin et al., 2001; Nagler et al., 2003; Kokaly et al. 2009).



Global mapping of fractional NPV cover will require continuous spectra over a minimum
spectral range of 2000 to 2450 nm, capturing lignocellulose and mineral absorption features
that allow separation of NPV from soil (e.g. Asner & Heidebrecht, 2002; Serbin et al., 2009b;
Kokaly et al., 2013), plus a portion of the near-infrared (NIR) spectrum covering one of the
water vapor absorption features (around 940 or 1140 nm) for atmospheric correction (Gao &
Goetz, 1990; Gao et al., 2009). Expanding the spectral range to 400-2500 nm would enable
improved discrimination of NPV from PV by capturing chlorophyll absorption in the visible and
the full range of canopy and soil liquid water absorption in the NIR and SWIR. This expanded
spectral range will also allow greater accuracy in atmospheric correction, by covering additional
atmospheric water vapor absorptions in the NIR. It is important to achieve accurate
atmospheric correction because residual, uncorrected atmospheric water vapor will have
strong impacts at the edges of lignocellulose absorption features in the 2000 to 2450 nm range.
Spectral resolution and full-width half-maximum must be < 15 nm to have full discrimination of
NPV from other cover types (Figure 8). Measures used to quantify lignocellulose absorption and
NPV cover, including spectral mixture analysis (e.g. Roberts et al., 1993; Asner & Heidebrecht,
2002), band depth analysis (e.g. Kokaly & Clark, 1999; Daughtry et al., 2004) and partial least
squares regression (e.g. Serbin et al., 2014; Qi et al., 2014) will also provide higher accuracies
with greater spectral sampling. Fractional NPV cover measurements will have a targeted 1o
error < 5%. Additional science is needed to demonstrate that this level of accuracy is achievable
globally.

Our measurement objective can be achieved at 30 m spatial resolution using an imaging
spectrometer with a 185 km swath and a 16-day revisit period. The revisit requirement is
ultimately driven by the need for seasonal cloud-free coverage. Ninety percent seasonal
coverage of terrestrial ecosystems is desirable for NPV cover mapping. Mercury et al. (2012)
found that three-month coverage of land surface and coastal areas ranged from 76% (Oct-Dec)
to 86% (Jan-Mar & Apr-Jun) for a mission design with a 19-day revisit period (Figure 9).
Shortening the revisit period to 16 days should exceed or come close to 90% seasonal coverage
of terrestrial ecosystems, with the potential exception of the Oct-Dec period. The areas least
likely to have seasonal coverage are very high latitude, tropical forests, or impacted by the
Asian monsoon (Figure 9).

Radiometric requirements include capturing the full range of reflected solar radiance from zero
to the maximum Lambertian reflectance for vegetated terrestrial ecosystems, high radiometric
sampling (212 bit), and 290% radiometric accuracy in the SWIR. High spectral uniformity is
needed for consistent fractional cover mapping, restricting geometric distortions (spatial
keystone) to <10% and cross-track distortions (spectral smile) to <10%. A Level 3 fractional NPV
cover product can be generated from Level 2 apparent surface reflectance. Atmospheric
correction of Level 1B top-of-atmosphere radiance to Level 2 apparent surface reflectance
would greatly benefit from an expanded spectral range that includes aerosol (400-700 nm),
oxygen absorption (762 nm) and water vapor absorption spectral features.

4. Achieving Global NPV Measurements in the Decadal Timeframe
Global NPV measurements can be achieved affordably in the decadal timeframe, due to
investments in response to global imaging spectrometer missions proposed in the 2007 NRC



Decadal Survey (NRC, 2007) and 2013 NRC sustainable land imaging report (NRC, 2013). An
imaging spectrometer mission to measure NPV would build on a legacy of airborne and space
instruments including AIS (Vane et al., 1984), AVIRIS (Green et al., 1998), AVIRIS-NG (Hamlin et
al., 2011) and Hyperion (Pearlman et al., 2003), as well as NIMS (Carlson et al., 1992), VIMS
(Brown et al., 2004), Deep Impact (Hampton et al., 2005), CRISM (Murchie et al., 2007), M3
(Green et al., 2011), and MISE, the imaging spectrometer now being developed for NASA’s
Europa mission.

NASA-guided engineering studies in 2014 and 2015 showed that a global terrestrial VSWIR (380
to 2510 nm) imaging spectrometer with a 185 km swath, 30 m spatial sampling and 16-day
revisit with high signal-to-noise ratio and the required spectroscopic uniformity can be
implemented affordably for a three year mission with mass, power, and volume compatible
with a Pegasus-class launch vehicle (Mouroulis et al., 2016). A scalable prototype F/1.8 full
VSWIR spectrometer (van Gorp et al., 2014) has already been developed and aligned, and
qualification is being completed (Figure 10). Data rate and volume issues have been addressed
by development and testing of a lossless compression algorithm for spectral measurements
(Klimesh et al., 2006; Aranki et al., 2009a,b; Keymeulen et al., 2014). This algorithm is now a
Consultative Committee for Space Data Systems standard (CCSDS, 2015). Algorithms for
automated cloud screening (Thompson et al., 2014), calibration (Green et al., 1998), and
atmospheric correction (Gao et al., 1993, 2009; Thompson et al., 2015) have been tested as
part of the HyspIRI preparatory (Lee et al., 2015), NASA AVIRIS-NG India, and SIMPL Greenland
campaigns. Spectral analysis algorithms have been applied to identify and map materials using
airborne imaging spectrometer data collected over a large area of Afghanistan (>430,000
sq.km.) and over an extended time period (more than two months), demonstrating consistent
discrimination of NPV from soil mineral components (Kokaly et al., 2013). To enhance
affordability and accelerate measurement availability, there is good potential for international
partnerships.
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Figure 1. Spectral variability in NPV (top-left) and soils (bottom-left). Much of this spectral
variability occurs in the SWIR, which can be seen when spectra are tied to a fixed wavelength at

2040 nm (panels at right). From Asner & Heidebrecht, 2002.
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Figure 2. The spectral signatures of NPV (filled squares) and soils (open squares) are difficult to
separate without a continuous spectrum capturing lignocellulose absorption in the SWIR. The
example shown is for MODIS data. From Okin, 2007.
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Figure 3. The relationship between NDVI and fraction of absorbed photosynthetically active
radiation (fAPAR) as it varies by background substrate, including soil and two types of NPV (crop
residue and litter). From Nagler et al., 2000.
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Figure 4. Changes in spectral reflectance over time in a single pixel containing Ceanothus
megacarpus. Changes in spectra measured by AVIRIS capture canopy dieback caused by the
California drought. Expression of lignocellulose absorption has increased as canopy dieback has
occurred, indicating an approximate 50% increase in fractional NPV cover. Adapted from
Coates et al., 2015.
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Figure 5. Change in NPV cover modeled from Landsat TM (A) and MODIS (B) data following
landfall of Hurricane Katrina in 2005. White lines in (B) indicate areas experiencing hurricane
(H2 & H1) and tropical storm (TS) force winds. From Chambers et al., 2007.
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Figure 6. Seasonal changes in big sagebrush (Artemisia tridentata) reflectance. As sagebrush
senesces through the summer and fall, NPV cover increases and fire danger increases.
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Figure 7. An example of a NPV cover time series provided through the VegMachine application
developed for forage monitoring in Australia. The plot at right shows trends in NPV cover (blue
line) and PV cover (green line) in context of precipitation (blue bars).
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Figure 8. Continuum interpolated band ratio (CIBR) values measuring the depth of the 2120 nm
lignocellulose absorption maximum across mixtures of NPV and PV spectra (left) and NPV and
soil spectra (right). Lower CIBR values indicate stronger absorption and a greater ability to
discriminate fractional NPV cover in mixed pixels. As spectral resolution and full-width half-
maximum are degraded, there is little change in lignocellulose absorption strength through 15
nm sampling. However, the expression of lignocellulose absorption is reduced at 20 nm and 30
nm sampling.
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Figure 9. Number of cloud-free daytime views for a 19-day repeat cycle, for a) Jan-Mar, b) Apr-
Jun, c) Jul-Sep, and d) Oct-Dec. From Mercury et al., 2012.
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Figure 10. Design of the prototype F/1.8 VSWIR Dyson spectrometer covering a spectral range
from 380 to 2510 nm.
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