Science Rationale STM Ecosystem Function and Diversity | | | Measurement | | | |--|---|---|--|---| | Science Objectives | Measurement Objectives | Requirements | Instrument Requirements | Other Mission Requirements | | Ecosystem Function and Div | | | | | | Changes in regional and global extent of plant and | Dominant PFT fractions
(terrestrial): e.g. tree, shrub,
herbaceous, cryptogam; | PFT fraction uncertainty: ±10% | Imaging spectrometer:
SNR: 600 VNIR, 300 SWIR
(ZA=23.5°, 25% reflectance) | Surface reflectance for solar zenith angles ≤70° | | plankton functional types | thick/thin leaves; broad/needle | Annual products of ≤ monthly | >95% abs. radiometric cal., | Monthly lunar cal. maneuvers; | | (PFT) | leaves; deciduous/evergreen; | observations | >98% on-orbit rel. reflectance | design for daily solar cal. | | (FF1) | nitrogen-fixer/non-fixer; C3/C4 | Sampling 105 m2 patches | ≤60 m pixels | ~840 Mbps raw data rate | | | physiology | Regionally important PFT | | Regional algorithm development | | | (a) Dominant functional types
(aquatic): e.g. phytoplankton
(diatoms, dinoflagellates,
coccolithophores, N-fixers), kelp, | 380-2500 nm reflectance, high
dynamic range (dark aquatic
targets near bright surfaces) | SNR—violet/blue/green: 400:1,
yellow/orange/red: 300:1,
wavelength >900 nm: ≥100:1;
14 bit digitization | Terra-like sun-synchronous, repeat-
track, low Earth orbit;
local equatorial crossing time:10:30
to 11:30 am | | | seagrass, mangroves, Spartina, etc. (b) Aquatic biogeochemical | Global coverage: full resolution for shallow water < 50 m deep | > 99.5% radiometric calibration
relative stability | Reversible high resolution data
calibration | | | constituent: (phytoplankton,
sediment, CDOM, benthos) | and coarse resolution (~1 km)
data for deeper water | Rapid (<2 pixel) bright target recovery (no significant ringing) | High-throughput on-board
processing for spatial aggregation
of open ocean data | | Changes in spatial extent of
certain diagnostic species | diatoms, dinoflagellates | Regional coverage with annual products | >95% cross-track uniformity & spectral uniformity | Data corrected for atmosphere & observing geometry | | Changes in global extent of ecosystems | Refined ecosystem types
(terrestrial): e.g. grasslands,
shrublands, broadleaf evergreen
forests, needleleaf evergreen
woodlands, etc. | Classification accuracy ≥90% | High-fidelity imaging
spectrometer: 0.4 - 2.5 µm; ≤10
nm resolution; >99% linearity (2
to 98% saturation) | Landsat-like sun-synchronous,
repeat-track orbit; local equatorial
crossing time 10-11 am | | | Refined ecosystem types: (a)
shallow/clear water: tropical
coral reef, macroalgal beds, | Annual products of ≤ monthly observations | High-fidelity imaging
spectrometer: 0.38 - 2.5 µm;
polarization sensitivity <2% | Rigorous cal/val program | | | sediments; (b) shallow/turbid:
estuaries, river plume, harmful
and benign blooms; (c) lakes | | No significant cross-talk
between bands, stray light, or
ghosting (<0.2% ocean TOA) | Pointing strategy to avoid sunglint pattern and hot spot | ## Science Rationale STM Biogeochemical Cycles | L | Science Objectives | Measurement Objectives | Measurement
Requirements | Instrument Requirements | Other Mission Requirements | |---|---|---|---|---|--| | | Biogeochemical Cycles | | | | | | | Environmental change effects
on productivity, carbon
storage and biogeochemical | Refined ecosystem types | land coactalimaring waters | Average duty cycle 12-15% at full resolution | Weekly science processing: 9-10
Tbytes of spectrometer data | | ١ | | Leaf and canopy water content
(terrestrial) | Quantify liquid water and water
vapor absorption | Spectral resolution ≤10 nm for
800-1300 nm range | Compatible data over full seasonal
cycles | | | | Phytoplankton type and benthic type (aquatic) | Quantify phytoplankton cell
sizes, N-fixers; substrate living,
non-living, seagrass, coral | Spectral resolution ≤10 nm for
380-2500 nm range | Linked automated observations
using in situ observatories to
assess water clarity and other
parameters in real-time | | ١ | | Leaf and canopy pigment and
nutrient content (terrestrial) | Spectral feature analysis of the
400-2500 nm range | High data quality 400-750 nm, including UV-blue transition | Data corrected for atmosphere & observing geometry | | ١ | | Community pigment and nutrient content (aquatic) | Spectral feature analysis of the
380-2500 nm range | Spectral range: 0.38 to 2.5 µm | Normalized water-leaving radiance | | ١ | Earth system | Canopy light-use efficiency and gross/net primary production | Pigment analyses, nitrogen
analyses, canopy water data | Swath width: 145 km (baseline) | Revisit interval: Goal 3-5 days;
Baseline 19 days | | ١ | | (terrestrial) | Canopy cover phenology data at
weekly time scales | Option: 2nd spectrometer with
≥600 km swath | Modeling community engaged in
product definition and evaluation. | | | | Community light-use efficiency
and gross/net primary production
(aquatic) | Pigment analyses, nitrogen
analyses, fluorescence line
height, CDOM, suspended
sediment distribution | High SNR near solar-stimulated chlorophyll fluorescence peak (683 nm) | Access to ancillary data: Wind
Speed, Mixed-Layer-Depth, Sea
Surface Temperature | #### Science Rationale Ecosystem Response to Disturbance | Science Objectives | Measurement Objectives | Measurement
Requirements | Instrument Requirements | Other Mission Requirements | | |--|--|---|---|--|--| | Ecosystem Response to Disturbance | | | | | | | | Fractional cover of photosynthetic vegetation (PV), | range: 5-95% | Spectral quality sufficient to
control for variable soil
reflectance in cover estimates | Mission life: 3 years; 6-year goal | | | | non-photosynthetic vegetation
(NPV), soil, ice/snow (terrestrial) | Measured at 2 X 10 ³ m ² ,
changes at 10 ⁴ m ² grain,
sampling 10 ⁵ m ² patches | Re-sampled effective ground
resolution ≤ 120 m; pixel
resolution ≤ 60 m | Time-tagging, pointing & position knowledge provide for ≤30 m mapping uncertainty (3 σ) | | | Disturbance effects on the distribution of ecosystems | Size and distribution of aquatic plant blooms and patches (including plankton and benthic species), colored dissolved organic carbon (DOC) and suspended sediment distrib. | Separate absorption effects due to pigments and CDOM; separate water column effects when assessing benthic cover | Spectral quality and resolution sufficient to control for CDOM and water column effects | Robust cross-discipline program
(terrestrial and aquatic linked
ecosystem studies, to examine
ridges-to-reefs types of ecosystem
linkages) | | | | Refined ecosystem types | Global coverage | Stable response (>99.5 %) over
orbit segments ≥ 40 min. | 3-axis pointing control; with real-
time position knowledge; robust
cross-discipline program | | | | Fractional cover (terrestrial);
Bloom/patch abundance | Detect and quantify fractional
cover and phytoplankton
abundance changes: ≥ 10% | Long-term: >95% absolute
radiometric calibration, >98% on-
orbit relative reflectance | Seasonally matched, stable, high-
quality level 3 data | | | Disturbance effects on the
biodiversity of ecosystems | (a) Dominant functional types; (b) Biogeochemical constituents (aquatic) | ≥ 80% complete per seasonal (≤
96-day) re-olbservation | Average duty cycle 12-15% at full resolution | Operations optimized for seasonal repeat coverage | | | | Diagnostic species/taxa | Annual products of ≤ monthly
observations | same as above | Consistent distribution data for diagnostic species (level 3) | | | | Fractional cover (terrestrial);
Bloom/patch abundance | Full global coverage | Average duty cycle 12-15%;
maximum: 2 orbits at 40% | Storage & downlink of ~1.9 Thits in 2 orbits (2:1 data reduction) | | | Disturbance effects on the | Leaf and canopy water (land);
Phytoplankton type and benthic
type (aquatic) | ≤ monthly observations and data
products | same as above | Seasonally matched high-quality canopy water data (level 3) | | | functioning of ecosystems | Pigment and nutrient content | Quantify changes in
pigments/nutrients | same as above | Seasonally matched pigment & nutrient content data (level 3) | | | | Canopy/community light-use
efficiency and gross/net primary
production | Estimate the global amount and intensity of disturbance in modeling grid cells ½° × ½° | Aggregate duty cycle 40%, with coarse resolution data | Sufficient sampling to estimate disturbance distribution functions at ≤ 3000 km² scales | | # Science Rationale STM Ecosystems and Human Well-Being | Science Objectives | Measurement Objectives | Measurement
Requirements | Instrument Requirements | Other Mission Requirements | |-------------------------|---|---|--|--| | Ecosystems and Human We | ll-Being | | | | | | (a) Dominant functional types;
(b) Biogeochemical constituents
(aquatic) | Annual products from ≤ monthly observations | >95% abs. radiometric cal.,
>98% on-orbit rel. reflectance | Watershed-based data retrieval for ridge to reef assessments | | | Diagnostic species/taxa | Regional coverage | same as above | Simple off-track imaging requests | | | Refined ecosystem types | Global coverage | Stable response (>99.5 %) over orbit segments (≥ 40 min.) | Decision support system
development that includes
ecosystem-based models | | | Fractional cover (terrestrial);
Bloom/patch abundance | ≤ monthly observations (more
frequent for targeted events) | Swath width: 145-150 km | Revisit interval (tropics): 3-30 days (with cross-track pointing) | | and resource management | Leaf and canopy water (land);
Phytoplankton type and benthic
type (aquatic) | ≤ monthly observations and products | Spectral resolution ≤10 nm | Comparable coincident data over full seasonal cycles | | | Pigment and nutrient content | Spectral feature analysis of the 380-2500 nm range | Spectral range: 0.38 - 2.5 µm | Spectra corrected to apparent
reflectance/normalized water-
leaving radiance | | | Canopy/community light-use efficiency and gross/net primary production | Pigments, nitrogen, canopy
water content, phytoplankton
type and benthic type | High SNR, particularly around
solar-stimulated chlorophyll
fluorescence peak | Global biosphere carbon-based production estimates | ### Science Rationale STM Volcanoes | Science Objectives | Measurement Objectives | Measurement
Requirements | Instrument Requirements | Other Mission and
Measurement Requirements | | | |--|---|--|--|--|--|--| | Volcanoes:
What are the changes in the | | | | | | | | changes in surface
temperature or gas emission | Detect, quantify and monitor subtle variations in: 1) surface temperatures 2) sulfur dioxide emissions at low, non-eruptive flux levels. Compilation of long-term baseline data sets. | Temperature measurements in the range -20 to 100 °C. TIR radiance measurements at ~8 µm; 5 other TIR bands for use in SO2 retrieval algorithm; 7 day repeat. | 7 TIR channels, 7-12 μm
Pixel size ≤60 m
NEΔT ~0.2 K.
>95% abs. radiometric
calibration | Nighttime data acquisitions. | | | | What do changes in the rate of lava effusion tell us about the maximum lengths that lava flows can attain, the likely duration of lava flowforming eruptions, and the sizes of magma chambers? | Area covered by active lava flows; Lava flow surface temperatures; Radiant flux from lava flow surfaces. | Temperature measurements in the range 0 to 1200 °C (active lava), and 0-50 °C (ambient background). 5 day repeat. | 1 low gain channel at ~4 µm
(NEΔT ~ 1-2 K)
2 nominal gain channels at
10-12 µm
Pixel size ≤90 m
Rapid bright target recovery
at 4 µm (<2 pixels), bands
saturate at 1200C | Nighttime data acquisitions. NIR/SWIR hyperspectral data is beneficial. Rapid response off nadir pointing capability. Rapid re-tasking for acquisition of targets of opportunity. | | | | What are the impacts of volcanic gas emissions on local and regional atmospheric conditions, and the contributions to the global budget of sulfate aerosols? | Quantifying SO2 emission rates;
Quantify rate at which SO2 is converted to sulfate aerosol. | Four spectral channels at
8.5, 10, 11, and 12 <u>μ</u> m;
NEΔT of 0.2 K, 7 day repeat | 7 channels, 8-12 μm.
Pixel size ≤90 m
>95% abs. radiometric
calibration | NIR/SWIR hyperspectral data
desireable to assist in
recognition of meteorological
clouds and estimation of plume
height. Night-time data
acquisitions. | | | | What are the characteristic dispersal patterns and residence times for volcanic ash clouds and how long do they remain a threat to aviation? | Discrimination of volcanic
ash clouds from
meteorological clouds (both
water and ice), in both wet
and dry air masses. | Four spectral channels at
8.5, 10, 11, and 12 µm; Nedt
of 0.2 K, Max. repeat cycle of
5 days. | 4 channels, 8-14 μm.
Pixel size ≤90 m
>95% abs. radiometric
calibration | NIR/SWIR hyperspectral data
valuable to assist in recognition
of meteorological clouds and
estimation of plume height. Night
increase the frequency of
observation. | | | | What is the distribution of
hydrothermally altered rocks
and other structural features
on volcanic edifices for
prediction of debris flow
hazards? | Surface emissivity; Sub-pixel
abundance of alteration
minerals. | Ability to discern variation in
silica content of +/- 5%
based on 8-12 µm band
minimum position; ability to
discern diagnostic non-
silicate spectral features. | 7 channels, 8-14 μm.
Pixel size ≤50 m.
>95% abs. radiometric
calibration | NIR/SWIR hyperspectral data. | | | ## Science Rationale STM Wildfires | | | Measurement | | Other Mission and | | |--|--|--|--|--|--| | Science Objectives | Measurement Objectives | Requirements | Instrument Requirements | Measurement Requirements | | | | Wildfires: How are global fire regimes changing in response to changing climate and land use practices? Are regions becoming more fire prone? What is the role of fire in global biogeochemical cycling, particularly atmospheric composition? Are there regional feedbacks between fire and climate change? | | | | | | How are global fire regimes
(fire location, type, frequency,
and intensity) changing in
response to changing climate
and land use practices? | Fire detection, fire intensity | Detect flaming and smoldering fires as small as ~10 sq. m in size, fire radiative power, 4-10 day repeat cycle | Low and normal gain channels at 4 and 11 µm. Low-gain saturation at 1400 K, 1100 K, respectively, with 2-3 K NEdT; normal-gain NEdT < 0.2 K. Stable behavior in the event of saturation. 50-100 m spatial resolution. Accurate inter-band coregistration. Opportunistic use of additional bands in 8-14 µm region. | Daytime and nighttime data
acquisition, sun synchronous
orbit | | | Are regions becoming more fire prone? | Fire detection | Detect flaming and
smoldering fires as small as
~10 sq. m in size, 4-10 day
repeat cycle | 4 and 11 µm channels having
390 K saturation, < 0.2K NEdT.
Stable behavior in the event of
saturation. 50-100 m spatial
resolution. Accurate inter-band
coregistration. | Daytime and nighttime data
acquisition, sun synchronous
orbit | | | What is the role of fire in
global biogeochemical
cycling, particularly
atmospheric composition? | Fire detection, fire intensity,
burn severity, delineate
burned area | Detect flaming and smoldering fires as small as ~10 sq. m in size, fire radiative power, 4-10 day repeat cycle | Low and normal gain channels at 4 and 11 µm. Low-gain saturation at 1400 K, 1100 K, respectively, with 2-3 K NEdT; normal-gain NEdT < 0.2 K. Stable behavior in the event of saturation. 50-100 m spatial resolution. Accurate inter-band coregistration. | Daytime and nighttime data acquisition, sun synchronous orbit, vegetation cover for fuel potential | | | Are there regional feedbacks
between fire and climate
change? | Fire detection, fire intensity | Detect flaming and smoldering fires as small as ~10 sq. m in size, fire radiative power, 4-10 day repeat cycle | Low and normal gain channels at 4 and 11 microns. Low-gain saturation at 1400 K, 1100 K, respectively, with 2-3 K NEdT; normal-gain NEdT < 0.2 K. Stable behavior in the event of saturation. 50-100 m spatial resolution. Accurate inter-band coregistration. | Daytime and nighttime data acquisition, sun synchronous orbit | | # Science Rationale STM Water Use and Availability | Science Objectives | Measurement Objectives | Measurement
Requirements | Instrument Requirements | Other Mission and
Measurement Requirements | | | |---|---|--|--|---|--|--| | | Water Use and Availability: As global freshwater supplies become increasingly limited, how can we better characterize trends in local and regional water use and moisture availability to help conserve this critical resource? | | | | | | | How can we improve spatial information about evapotranspiration (water loss to the atmosphere) to facilitate better management of our Earth's freshwater | Evapotranspiration at scales resolving the typical lengthscales of landsurface moisture heterogeneity | Global coverage; ~weekly
repeat; resolving e.g., field,
riparian patches, reservoirs,
water rights polygons; LST
accurate to <1K; ~10:30AM
overpass | ≤50m resolution; 2 bands in
10-12μm and at least 1
emissivity-sensitive band
(e.g. 8.5-9.5μm); Min/Max T
270/360 K | Maps of vegetation index;
landuse; insolation data; Landsat
like mid-morning sun-
synchronous overpass | | | | How can we obtain better information about vegetation water stress conditions at spatiotemporal scales that are beneficial for global drought early detection, mitigation, and impact assessment efforts? | Stress index at field scales | Global coverage; ~weekly
repeat; resolving field-scale
(1 ha) patches; LST accurate
to <1K; ~10:30AM overpass | ≤100m resolution; 3+ bands
as above; Min/Max T 270/360
K | | | | | What is the current global
irrigated acreage, how is it
changing with time, and are
these changes in a
sustainable balance with
regional water availability? | Robust detection of pixels receiving seasonal water inputs in excess of rainfall | Global coverage; ~monthly
repeat; resolving irrigation
patches; ~10:30 AM
overpass | ≤100m resolution; 3+ bands
as above; Min/Max T 270/360
K | Agriculture/non-agric.
classification; vegetation index | | | | Can remote sensing-based technologies improve irrigation efficiency in water-scarce agricultural regions? | Accurate evapotranspiration at sub-field scales | < weekly repeat, irrigation
patches well resolved; LST
accurate to 0.5K; ~10:30AM
overpass | | Vegetation index; accurate local meteorological forcing conditions | | | ### Science Rationale STM Urbanization | Science Objectives | Measurement Objectives | Measurement
Requirements | Instrument Requirements | Other Mission and
Measurement Requirements | |--|--|--|---|--| | Urbanization: How does urb
impact on human health and | anization affect the local, re્
l welfare | gional, and global environme | ent? Can we characterize thi | s effect to help mitigate its | | How do changes in land cover and land use affect surface energy balance and the sustainability and production of natural and human ecosystems? | Surface temperature
Surface energy balance
Surface energy fluxes
Surface emissivity
Global coverage | Low and high temp. targets
NE∆T 0.2-0.3
3-6 bands from 8-12µm
High spatial resolution
(~45m) | Multiple spectral bands for
surface temp. discrimination
of urban surfaces
Min T/Max T 273/370 (K) | High temporal resolution
(weekly)
Accuracy of 1 deg.K/NEΔT 0.2-
0.3 | | What are the dynamics, magnitude, and spatial form of the urban heat island effect (UHI), how does it change from city to city, what are its temporal, diurnal, and nocturnal characteristics, and what are regional impacts of the UHI on biophysical, climatic, and environmental processes? | Measurement of urban
surface temperature spatial
extent
Day/night thermal surface
measurements
Seasonal observations
Global coverage | Multispectral thermal measurements for target discrimination (3-6) bands High spatial resolution (~45m) Day/night observations | Multiple spectral bands (3-6 bands) from 8-12µm for day/night surface temp. measurements High spatial resolution (~45m) Min T/Max T 273/370 K for diurnal observations | High temporal resolution
(weekly)
Accuracy of 1 deg.K/NEΔT 0.2-
0.3 | | How can the characteristics associated with environmentally related health effects, such as factors influencing heat stress on humans and surface temperatures that affect vector-borne aqnd animalborne diseases, be better resolved and measured? | Surface temperature
Surface water/wetness
Global coverage | Detection of wet/dry surfaces
Daytime/nighttime
observations
Vegetated/non-vegetated
surfaces | Multispectral thermal bands for surface temperature measurements (3-6 bands) Diurnal and nocturnal observations Low temperature and high temperature targets (NEΔT 0.2-0.3 K) | High temporal resolution
(weekly)
High spatial resolution (~45m)
Accuracy of 1 deg.K/NEΔT 0.2-
0.3 | ## Science Rationale STM Surface Composition and Change | Science Objectives | Measurement Objectives | Measurement
Requirements | Instrument Requirements | Other Mission and
Measurement Requirements | | | |---|--|---|--|--|--|--| | What is the composition and ten habitability? | What is the composition and temperature of the exposed surface of the Earth? How do these factors change over time and affect land use and | | | | | | | What is the spectrally observable mineralogy of the Earth's surface? | Surface emissivity variations
associated with mineralogy
and rock type in exposed
terranes | Variation in silica content
and non-silicate spectral
features based on 8-12 um
band shape | 7 bands in 8-12 um range
with NEΔT < 0.2 K; spatial
resolution < 50 m; temporal
repeat quarterly | Band to band calibration must be
validated, preferably in-flight | | | | How has the Earth's surface been
affected by human exploitation of
non-renewable resources (oil &
gas, mining)? | Surface emissivity variations
associated with the
mineralogy of mine waste
dumps and pits | Variation in mineral content
based on 8-12 um band
shape including detection of
sulfate spectral features. | 7 bands in 8-12 um range
with NEΔT < 0.2 K; spatial
resolution < 50 m; temporal
repeat monthly | Band to band calibration must be
validated, preferably in-flight | | | | Can we detect transient thermal
anomalies associated with faulting
and earthquake activity? | Surface temperature across
fault zones corrected for
emissivity variations | Discern temporal variations in temperature with high precision | 3+ bands in 8-12 um range
with NEΔT < 0.2 K; Spatial
res. < 100 m; temporal
repeat 1-4 days | Nightime data necessary to
minimize radiant interference
due to solar heating | | | | How is thermal-atmospheric coupling during earthquakes related to active faulting? | Surface temperature
corrected for emissivity
variations | Discern temporal variations in temperature with high precision | 3+ bands in 8-12 um range
with NEΔT < 0.2 K; Spatial
resolution < 100 m; temporal
repeat 1-4 days | Use of 7.5 um band to
characterize atmospheric water
vapor | | | | How can we better identify and delineate the geothermal resources of the world? | Surface temperature
corrected for emissivity
variations | Discern variations in
temperature with high
precision and spatial
resolution | 3+ bands in 8-12 um range
with NEΔT < 0.2 K; Spatial
resolution < 50 m; temporal
repeat quarterly | Daytime/nightime image pairs
needed to account for thermal
inertia | | | | How do surface temperature
anomalies (hot spots) relate to
deeper thermal sources, such as
lava tubes and underground fires? | Surface temperature
corrected for emissivity
variations | Discern variations in
temperature with high
precision and spatial
resolution | 3+ bands in 8-12 um range
with NE∆T < 0.2 K; Spatial
resolution < 50 m; temporal
repeat weekly | Nightime data necessary to
minimize radiant interference
due to solar heating | | | | What is the spatial distribution and
dynamic behavior of surface
temperatures and emissivities of
various land surfaces? | Surface emissivity variations
and temperatures of all
surficial cover materials | Complex surface emissivity
properties based on 8-12 um
band shape | 7 bands in 8-12 um range
with NEΔT < 0.2 K; spatial
resolution < 50 m; temporal
repeat weekly | Accurate methods of
temperature emissivity
separation applicable to wide
range of materials needed. | | |