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Abstract 
 

The Hyperspectral Infrared Imager (HyspIRI) satellite includes a thermal infrared (TIR) 

multispectral scanner with seven spectral bands in the thermal infrared (TIR) between 7 and 12 

µm and one band in the mid-infrared between 3 and 5 µm designed to measure hot targets. The 

TIR bands have a NEΔT of <0.2 K at 300K and all bands have a spatial scale of 60 m. The two 

primary Level-2 products that will be generated by HyspIRI TIR data are surface temperature 

and emissivity. Both of these products will be generated from the six spectral bands between 8 

and 12 µm (Bands 2-6). The first band around 4 µm is designed for measuring hot targets and a 

different algorithm will be used to recover temperatures from it. The second band around 7.5 µm 

will be used to help with atmospheric correction. The surface radiance emitted from the Earth's 

surface depends on both temperature and emissivity, and separating these two components from 

the total radiance is difficult because there are more unknowns than there are measurements, 

presenting an ill-posed problem. For example, with the six HyspIRI TIR bands between 8 and 12 

µm, there will be six measurements and seven unknowns (six band emissivities and one 

temperature). Various approaches have been proposed to solve this ill-posed problem. One such 

approach, developed for ASTER on NASA's Terra platform, is termed the Temperature 

Emissivity Separation (TES) algorithm. Inputs to TES include the surface radiance, which is 

determined from atmospherically correcting the at-sensor radiance for path radiance and 

atmospheric absorption and the sky irradiance. TES is a hybridization of two previously well-

established algorithms: the normalized emissivity method (NEM) and the alpha residual method. 

First, emissivities and temperature are estimated with the NEM method, while using an iterative 

approach to remove downwelling sky irradiance. Next, the NEM emissivities are normalized by 

their mean. An empirical relationship based on the alpha residual method is then used to estimate 

the minimum emissivity, given the spectral contrast, or min-max differences (MMD), by using a 

calibration curve determined from laboratory measurements. Limitations in TES arise due to the 

empirical constraint the minimum emissivity and MMD, measurement accuracy, calibration, 

atmospheric correction, and removal of the reflected component of downwelling radiation. 

Previous studies have demonstrated that together these limitations result in a typical temperature 

uncertainty in of 1.5 K but the exact uncertainty will depend on the surface and atmospheric 

conditions at the time of the retrieval. 
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1 Introduction 

The Hyperspectral Infrared Imager (HyspIRI) mission includes two instruments: a visible 

shortwave infrared (VSWIR) imaging spectrometer operating between 380 and 2500 nm in 10-

nm contiguous bands and a thermal infrared (TIR) multispectral scanner with eight spectral 

bands operating between 4 and 12 µm. Both instruments acquire data with a spatial resolution of 

60m from the nominal orbit altitude. The VSWIR and TIR instruments have revisit times of 19 

and 5 days with swath widths of 145 and 600 km, respectively.  

This document outlines the theory and methodology for generating the HyspIRI TIR 

Level-2 land surface temperature and emissivity (LST&E) products. These products are derived 

from the six TIR spectral bands between 8 and 12 µm. A separate approach will be used to 

recover the temperature from the first spectral band in the mid infrared (MIR) between 3 and 5 

µm which is designed to measure the temperature of very hot targets (up to 1200 K). The second 

band around 7.5 µm is used to aid with the atmospheric correction. The LST&E are derived from 

the surface radiance that is obtained by atmospherically correcting the at-sensor radiance.. 

LST&E products are essential for a wide range of Earth system studies. For example, emissivity 

spectral signatures are important for geologic studies and mineral mapping studies (Hook et al. 

2005; Vaughan et al. 2005). This is because emissivity features in the TIR region are unique for 

many different types of materials that make up the Earth's surface, for example, quartz, which is 

ubiquitous in most of the arid regions of the world.. Emissivities are also used for land use and 

land cover change mapping since vegetation fractions can often be inferred if the background 

soil is observable (French et al. 2008). Knowledge of the surface emissivity is also critical for 

accurately recovering the surface temperature, a key climate variable in many scientific studies 

from climatology to hydrology, modeling the greenhouse effect, drought monitoring, and surface 

energy balance studies (Anderson et al. 2007; French et al. 2005; Jin and Dickinson 2010).  

The HyspIRI TIR measurement derives its heritage from the ASTER measurement. 

ASTER is a five-channel multispectral TIR scanner that was launched on NASA's Terra 

spacecraft in Dec. 1999 with a 90-m spatial resolution and revisit time of 16 days. The HyspIRI 

LST&E products will be produced globally over all land cover types, excluding open oceans for 

all cloud-free pixels. Generation of the LST&E products will be undertaken as part of the 

HyspIRI Project activities It is anticipated that these products will be merged to produce weekly, 

monthly, and seasonal products, with the monthly product most likely producing global 
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coverage, depending on cloud coverage, however, the generation of  these higher level merged 

products is not considered to be a Project activity. The Level 2 products will be validated with a 

mean ASTER seasonal emissivity map (e.g., summertime - July, Aug., Sept.) termed the North 

American ASTER Land Surface Emissivity Database (NAALSED), which was generated for 

North America using all available ASTER data over a 10-year period (Hulley and Hook 2009b). 

By contrast, HyspIRI will have the capability to produce such a product in less than one month. 

Because HyspIRI will have similar band placements and spatial footprint as ASTER, this type of 

comparison will be useful as a preliminary assessment of the accuracy of the LST&E products.  

Maximum radiometric emission for the typical range of Earth surface temperatures, 

excluding fires and volcanoes, is found in two infrared spectral "window" regions: the midwave 

infrared (3.5–5 µm) and the thermal infrared (8–13 µm). The radiation emitted in these windows 

for a given wavelength is a function of both temperature and emissivity. Determining the 

separate contribution from each component in a radiometric measurement is an ill-posed problem 

since there will always be more unknowns—N emissivities and a single temperature—than the 

number of measurements, N, available. For HyspIRI, we will be solving for one temperature and 

six emissivities (HyspIRI TIR bands 3–8). Therefore, an additional constraint is needed, 

independent of the data. There have been numerous theories and approaches over the past two 

decades to solve for this extra degree of freedom. For example, the ASTER Temperature 

Emissivity Working Group (TEWG) analyzed ten different algorithms for solving the problem 

(Gillespie et al. 1999). Most of these relied on a radiative transfer model to correct at-sensor 

radiance to surface radiance and an emissivity model to separate temperature and emissivity. 

Other approaches include the split-window (SW) algorithm, which extends the SST SW 

approach to land surfaces, assuming that land emissivities in the window region (10.5–12 µm) 

are stable and well known. However, this assumption leads to unreasonably large errors over 

barren regions where emissivities have large variations both spatially and spectrally. The ASTER 

TEWG finally decided on a hybrid algorithm, termed the temperature emissivity separation 

(TES) algorithm, which capitalizes on the strengths of previous algorithms with additional 

features (Gillespie et al. 1998).  

TES is applied to the land-leaving TIR radiances that are estimated by atmospherically 

correcting the at-sensor radiance on a pixel-by-pixel basis using a radiative transfer model. The 

methodology to atmospherically correct the TIR radiances is described in the HyspIRI Level 2 
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Surface Radiance ATBD . TES uses an empirical relationship to predict the minimum emissivity 

that would be observed from a given spectral contrast, or minimum-maximum difference 

(MMD) (Kealy and Hook 1993; Matsunaga 1994). The empirical relationship is referred to as 

the calibration curve and is derived from a subset of spectra in the ASTER spectral library 

(Baldridge et al. 2009). A new calibration curve, applicable to HyspIRI TIR bands, will be 

computed with an updated version of the ASTER spectral library, termed the HyspIRI spectral 

library, which will consist of all original spectra resampled to the HyspIRI VSWIR and TIR 

instrument spectral characteristics. TES has been shown to accurately recover temperatures 

within 1.5 K and emissivities within 0.015 for a wide range of surfaces and is a well established 

physical algorithm that produces seamless images with no artificial discontinuities such as might 

be seen in a land classification type algorithm (Gillespie et al. 1998). 

The remainder of the document will discuss the HyspIRI instrument characteristics, 

provide a background on TIR remote sensing, give a full description and background on the TES 

algorithm, provide quality assessment, discuss numerical simulation studies and, finally, outline 

a validation plan. 

2 HyspIRI Instrument Characteristics 

The TIR instrument will acquire data in eight spectral bands, seven of which are located in 

the thermal infrared part of the electromagnetic spectrum between 7 and 13 µm shown in Figure 

1; the remaining band is located in the mid infrared part of the spectrum around 4 µm. The center 

position and width of each band is provided in Table 1.  The exact spectral location of each band 

has not been determined, the nominal locations provided here are based on the measurement 

requirements identified in the science-traceability matrices, which included recognition that 

related data was acquired by other sensors such as ASTER and MODIS. HyspIRI will contribute 

to maintaining a longtime series of these measurements. For example, the positions of three of 

the TIR bands closely match the first three thermal bands of ASTER, while two of the TIR bands 

match bands of ASTER and MODIS typically used for split-window type applications (ASTER 

bands 12–14 and MODIS bands 31, 32). It is expected that small adjustments to the band 

positions will be made based on ongoing science activities. 
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A key science objective for the TIR instrument is the study of hot targets (volcanoes and 

wildfires), so the saturation temperature for the 4-µm channel is set high (1200 K), whereas the 

saturation temperatures for the thermal infrared channels are set at 500 K.  

The TIR instrument will operate as a whiskbroom mapper, similar to MODIS but with 256 pixels 

in the cross-whisk direction for each spectral channel (Figure 2). A conceptual layout for the 

instrument is shown in Figure 3. The scan mirror rotates at a constant angular speed. It sweeps 

the focal plane image across nadir, then to a blackbody target and space, with a 2.2-second cycle 

time. 

The f/2 optics design is all reflective, with gold-coated mirrors.  The 60-K focal plane will 

be single-bandgap mercury cadmium telluride (HgCdTe) detector, hybridized to a CMOS 

readout chip, with a butcher block spectral filter assembly over the detectors.  Thirty-two analog 

output lines, each operating at 10–12.5 MHz, will move the data to analog-to-digital converters. 

 

 

Figure 1: HyspIRI TIR instrument proposed spectral bands. 

 

 

Spectral Bands
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Figure 2: HyspIRI TIR scanning scheme. 

 

 

Figure 3: HyspIRI TIR conceptual layout. 

The temperature resolution of the thermal channels is much finer than the mid-infrared 

channel, which (due to its high saturation temperature) will not detect a strong signal until the 

target is above typical terrestrial temperatures at around 400K. All the TIR channels are 

quantized at 14 bits.  Expected sensitivities of the eight channels, expressed in terms on noise-

equivalent temperature difference, are shown in the following two plots (Figures 4 and 5). 
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Figure 4: HyspIRI TIR predicted sensitivity 200–500 K. 

 

Figure 5: HyspIRI TIR predicted sensitivity 300–1100 K. 
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<50 m) but, over the open oceans, the data will be averaged to a spatial resolution of 1 km. The 

large swath width of the TIR will enable multiple revisits of any spot on the Earth every week (at 

least 1 day view and 1 night view). This repeat period is necessary to enable monitoring of 

dynamic or cyclical events such as volcanic hotspots or crop stress associated with water 

availability. 
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Table 1: Preliminary TIR Measurement Characteristics 

Spectral 

Bands (8) µm 3.98 µm, 7.35 µm, 8.28 µm, 8.63 µm, 9.07 µm, 10.53 µm, 11.33 µm, 
12.05 µm 

Bandwidth 0.084 µm, 0.32 µm, 0.34 µm, 0.35 µm, 0.36 µm, 0.54 µm, 0.54 µm, 0.52 
µm 

Accuracy <0.01 µm 

Radiometric 

Range Bands 2–8 = 200 K – 500 K; Band 1 = 1200 K 

Resolution < 0.05 K, linear quantization to 14 bits 

Accuracy < 0.5 K 3-sigma at 250 K 

Precision (NEdT) < 0.2 K 

Linearity >99% characterized to 0.1 % 

Spatial 

IFOV 60 m at nadir 

MTF >0.65 at FNy 

Scan Type Push-Whisk 

Swath Width 600 km (±25.5° at 623-km altitude) 

Cross Track Samples 9,300 

Swath Length 15.4 km (± 0.7 degrees at 623 km altitude) 

Down Track Samples 256 

Band to Band Co-Registration 0.2 pixels (12 m) 

Pointing Knowledge 10 arcsec (0.5 pixels) (approximate value, currently under evaluation) 

Temporal 

Orbit Crossing 11 a.m. Sun synchronous descending 

Global Land Repeat 5 days at Equator 

On Orbit Calibration 

Lunar views 1 per month {radiometric} 

Blackbody views 1 per scan {radiometric} 

Deep Space views 1 per scan {radiometric} 

Surface Cal Experiments 2 (day/night) every 5 days {radiometric}  

Spectral Surface Cal Experiments 1 per year 

Data Collection 

Time Coverage Day and Night 

Land Coverage Land surface above sea level 

Water Coverage Coastal zone minus 50 m and shallower  

Open Ocean Averaged to 1-km spatial sampling 

Compression 2:1 lossless 
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3 Science Objectives 

The HyspIRI mission is science driven by linking the measurement requirements for the 

mission to one or more science questions. HyspIRI has three top-level science questions related 

to 1) ecosystem function and composition, 2) volcanoes and natural hazards, and 3) surface 

composition and the sustainable management of natural resources (HyspIRI 2008). The NRC 

Decadal Survey called out these three areas. These questions provide a scientific framework for 

the HyspIRI mission. NASA appointed the HyspIRI Science Study Group (SSG) to refine and 

expand these questions to a level of detail that was sufficient to define the measurement 

requirements for the HyspIRI mission. 

 Five overarching thematic questions were defined by the HyspIRI SSG for the TIR 

component, as follows: 

 TQ1: Volcanoes and Earthquakes: How can we help predict and mitigate earthquake and 

volcanic hazards through detection of transient thermal phenomena? 

 TQ1: Wildfires: What is the impact of global biomass burning on the terrestrial biosphere 

and atmosphere, and how is this impact changing over time? 

 TQ3: Water Use and Availability: How is consumptive use of global freshwater supplies 

responding to changes in climate and demand, and what are the implications for sustaining 

water resources? 

 TQ4: Urbanization and Human Health: How does urbanization affect the local, regional, 

and global environment? Can we characterize this effect to help mitigate its effects on human 

health and welfare? 
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 TQ5: Earth Surface Composition and Change: What is the composition and thermal 

properties of the exposed surface of the Earth? How do these factors change over time and 

affect land use and its habitability? 

For each of these questions, accurate retrieval of LST&E plays a key role in defining the 

measurement objectives and requirements for these questions. The HyspIRI LST product, in 

particular, will be especially useful for studies of surface energy and water balance in 

agricultural regions at the crop scale (<100 m), where quantification of evapotranspiration 

processes are essential for helping land managers make important decisions relating to water use 

and availability. The HyspIRI emissivity product will contain information from rocks, soils, and 

vegetation at different wavelengths, which will provide a diagnostic tool for discriminating 

surface cover types at fine spatial scales. 

 

4 Theory and Methodology 

4.1 TIR Remote-Sensing Background 

The at-sensor measured radiance in the TIR spectral region (8–14 µm) is a combination of 

different terms from surface emission and the atmosphere. The Earth-emitted radiance is a 

function of temperature and emissivity and gets attenuated by the atmosphere on its path to the 

satellite. The atmosphere also emits radiation, of which some reaches the sensor directly as "path 

radiance," while some gets radiated to the surface (irradiance) and reflected back to the sensor, 

commonly  known as the reflected downwelling sky irradiance. One effect of the sky irradiance 

is the reduction of the spectral contrast of the emitted radiance, due to Kirchhoff's law. Assuming 

the spectral variation in emissivity is small (Lambertian assumption), and using Kirchhoff's law 

to express the hemispherical-directional reflectance as directional emissivity (𝜌𝜆 = 1 − 𝜖𝜆), the 
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clear sky at-sensor radiance can be written as three terms: the Earth-emitted radiance described 

by Planck's function and reduced by the emissivity factor,  𝜖𝜆 ; the reflected downwelling 

irradiance; and the path radiance.  

 𝐿𝜆 𝜃 =  𝜖𝜆𝐵𝜆 𝑇𝑠 +  1 − 𝜖𝜆 𝐿𝜆
↓  𝜏𝜆(𝜃) + 𝐿𝜆

↑ (𝜃) (1)  

 

𝐿𝜆 𝜃  = at-sensor radiance; 

 𝜆       = wavelength;  

𝜃        = observation angle;  

𝜖𝜆        = surface emissivity;  

𝑇𝑠       = surface temperature;  

𝐿𝜆
↓        = downwelling sky irradiance;  

𝜏𝜆(𝜃)  = atmospheric transmittance;  

𝐿𝜆
↑ (𝜃)  = atmospheric path radiance 

𝐵𝜆 𝑇𝑠  = Planck function, described by Planck's law: 

 

𝐵𝜆 =
𝑐1

𝜋𝜆5
 

1

exp 
𝑐2

𝜆𝑇
 − 1

  (2)  

𝑐1 = 2𝜋ℎ𝑐2=3.74∙ 10−16 W m
2
 (1st radiation constant) 

h   = 6.63∙ 10−34 W s
2
 (Planck's constant) 

c2 = h c/k = 1.44× 104 µm K (2nd radiation constant) 

k   = 1.38× 10−23 W s K
-1

 (Boltzmann's constant) 

c   = 2.99∙ 108 m s
-1

 (speed of light) 
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Figure 6 shows the relative contributions from the surface-emission term, surface 

radiance, and at-sensor radiance for a US Standard Atmosphere, quartz emissivity spectrum, and 

surface temperature set to 300 K. Vertical bars show the placement of the eight HyspIRI MWIR 

and TIR bands. The reflected downwelling term adds a small contribution in the window regions 

but will become more significant for more humid atmospheres. The at-sensor radiance shows 

large departures from the surface radiance in regions where atmospheric absorption from gases 

such as CO2, H2O, and O3 are high. 

 

Figure 6: Radiance simulations of the surface-emitted radiance, surface-emitted and reflected radiance, and 

at-sensor radiance using the MODTRAN 5.2 radiative transfer code, US Standard Atmosphere, quartz 

emissivity spectrum, surface temperature = 300K, and viewing angle set to nadir. Vertical bars show 

placements of the HyspIRI MWIR and TIR bands. 
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 Equation (1) gives the at-sensor radiance for a single wavelength, 𝜆 , while the 

measurement from a sensor is typically measured over a range of wavelengths, or band. The at-

sensor radiance for a discrete band, 𝑖, is obtained by weighting and normalizing the at-sensor 

spectral radiance calculated by equation (1) with the sensor's spectral response function for each 

band, 𝑆𝑟𝜆 , as follows: 

𝐿𝑖 𝜃 =
 𝑆𝑟𝜆(i) ∙ 𝐿𝜆 𝜃 ∙ dλ 

𝑆𝑟𝜆(i) ∙ dλ
 (3)   

Using equations (1) and (2), the surface radiance for band 𝑖 can be written as a combination of 

two terms: Earth-emitted radiance, and reflected downward irradiance from the sky and 

surroundings: 

 

 
𝐿𝑠,𝑖 = 𝜖𝑖𝐵𝑖 𝑇𝑠 +  1 − 𝜖𝑖 𝐿𝑖

↓ =
𝐿𝑖 𝜃 − 𝐿𝑖

↑(𝜃)

𝜏𝑖(𝜃)
 

(4)  

 The atmospheric parameters, 𝐿𝜆
↓ , 𝜏𝜆(𝜃), 𝐿𝜆

↑ (𝜃), are estimated with a radiative transfer 

model such as MODTRAN (Kneizys et al. 1996) using input atmospheric fields of air 

temperature, relative humidity, and geopotential height.  

 The emissivity of an isothermal, homogeneous emitter is defined as the ratio of the actual 

emitted radiance to the radiance emitted from a black body at the same thermodynamic 

temperature (Norman and Becker 1995),  𝜖𝜆= 𝑅𝜆 /𝐵𝜆 . The emissivity is an intrinsic property of 

the Earth’s surface and is an independent measurement of the surface temperature, which varies 

with irradiance and local atmospheric conditions. The emissivity of most natural Earth surfaces 

for the TIR wavelength ranges between 8 and 12 μm and, for a sensor with spatial scales <100 

m, varies from ~0.7 to close to 1.0. Narrowband emissivities less than 0.85 are typical for most 

desert and semi-arid areas due to the strong quartz absorption feature (reststrahlen band) between 
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the 8- and 9.5-μm range, whereas the emissivity of vegetation, water, and ice cover are generally 

greater than 0.95 and spectrally flat in the 8–12-μm  range. 

 

*** More here to be added in the future of typical radiance values using MODTRAN (give table 

for different atmospheres and conditions). 
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4.2 Temperature and Emissivity Separation Approaches 

 The radiance in the TIR atmospheric window (8–13 µm) is dependent on the temperature 

and emissivity of the surface being observed. Even if the atmospheric properties (water vapor 

and air temperature) are well known and can be removed from equation (1), the problem of 

retrieving surface temperature and emissivity from multispectral measurements is still a non-

deterministic process. This is because the total number of measurements available (N bands) is 

always less than the number of variables to be solved for (emissivity in N bands and one surface 

temperature). Therefore, no retrieval will ever do a perfect job of separation, with the 

consequence that errors in temperature and emissivity may co-vary. If the surface can be 

approximated as Lambertian (isotropic) and the emissivity is assigned a priori from a land cover 

classification, then the problem becomes deterministic with only the surface temperature being 

the unknown variable. Examples of such cases would be over ocean, ice, or densely vegetated 

scenes where the emissivity is known and spectrally flat in all bands. Another deterministic 

approach is the single-band inversion approach. If the atmospheric parameters are known in 

equation (1), then the temperature can also be solved for using a single band, usually in the 

clearest region of the window (~11 µm). Deterministic approaches are usually employed with 

sensors that have two or three bands in the TIR region, while non-deterministic approaches are 

applied to multispectral sensors so that spectral variations in the retrieved emissivity can be 

related to surface composition and cover, in addition to retrieving the surface temperature. For 

HyspIRI, a non-deterministic approach will be used, as spectral emissivity will need to be 

determined physically, along with temperature, in order to help answer the science questions 

outlined previously in section 3. 
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4.2.1 Deterministic Approaches 

4.2.1.1 Split-window Algorithms 

 The most common deterministic approach can be employed without having to explicitly 

solve the radiative transfer equation. Two or more bands are employed in the window region 

(typically 10.5–12 µm), and atmospheric effects are compensated for by the differential 

absorption characteristics from the two bands. This approach is used with much success over 

oceans to compute the SST (Brown and Minnett 1999), as the emissivity of water is well known 

(Masuda et al. 1988).  Variations of this method over land include the split-window (SW) 

approach (Coll and Caselles 1997; Prata 1994; Price 1984; Wan and Dozier 1996; Yu et al. 

2008), the multichannel algorithm (Deschamps and Phulpin 1980), and the dual-angle algorithm 

(Barton et al. 1989). Over land, the assumption is that emissivities in the split-window bands 

being used are stable and well known and can be assigned using a land cover classification map 

(Snyder et al. 1998). However, this assumption introduces large errors over barren surfaces 

where much larger variations in emissivity are found due to the presence of large amounts of 

exposed rock or soil often with abundant silicates (Hulley and Hook 2009a). Land cover 

classification maps typically use VNIR data for assignment of various classes. This method may 

work for most vegetation types and over water surfaces but, because VNIR reflectances 

correspond predominately to Fe oxides and OH
-
 and not to the Si-O bond over barren areas, there 

is little or no correlation with silicate mineralogy features in thermal infrared data. This is why, 

in most classification maps, only one bare land class is specified (barren). This type of approach 

will not be used for the HyspIRI standard algorithm for the following reasons:  

1. One of the goals of HyspIRI TIR science is to retrieve the spectral emissivity of geologic 

surfaces for compositional analysis. Classification does not produce this type of product. 
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2. The emissivity of the land surface is in general heterogeneous and is dependent on many 

factors including surface soil moisture, vegetation cover changes, and surface compositional 

changes, which are not characterized by classification maps.  

3. Split-window algorithms are inherently very sensitive to measurement noise between bands. 

4. Classification leads to sharp discontinuities and contours in the data between different class 

types. This violates one of the goals of HyspIRI in producing seamless images.  

5. Temperature inaccuracies are difficult to quantify over geologic surfaces where constant 

emissivities are assigned. 

4.2.1.2 Single-band Inversion 

 If the atmosphere is known, along with an estimate of the emissivity, then equation (1) 

can be inverted to retrieve the surface temperature using one band. Theoretically, any band used 

should retrieve the same temperature, but uncertainties in the atmospheric correction will result 

in subtle differences as different bands have stronger atmospheric absorption features than others 

which may be imperfectly corrected for atmospheric absorption. For example, a band near 8 µm 

will have larger dependence on water vapor, while the 9–10-µm region will be more susceptible 

to ozone absorption. Jimenez-Munoz and Sobrino (2010) applied this method to ASTER data by 

using atmospheric functions (AFs) to account for atmospheric effects. The AFs can be computed 

by the radiative transfer equation or empirically given the total water vapor content.  The clearest 

ASTER band (13 or 14) was used to retrieve the temperature, with the emissivity determined 

using an NDVI fractional vegetation cover approach. A similar procedure has been proposed to 

retrieve temperatures from the Landsat TIR band 6 on ETM+ and TM sensors (Li et al. 2004). 

The single-band inversion method will not be used for HyspIRI for the following reasons: 
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1. One of the goals of HyspIRI science will be to retrieve the spectral emissivity of geologic 

surfaces for compositional analysis. This will not be possible with the single-band approach, 

which assigns emissivity based on land cover type and vegetation fraction. 

2. Estimating emissivity from NDVI-derived vegetation cover fraction over arid and semi-arid 

regions will introduce errors in the LST because NDVI is responsive only to chlorophyll 

active vegetation, and does not correlate well with senescent vegetation (e.g., shrublands). 

3. Only one-band emissivity is solved for the single-band inversion approach. HyspIRI will be a 

multispectral retrieval approach. 

4.2.2 Non-deterministic Approaches 

 In non-deterministic approaches, the temperature and emissivity is solved using an 

additional constraint or extra degree of freedom that is independent of the data source. These 

types of solutions are also rarely perfect because the additional constraint will always introduce 

an additional level of uncertainty, however, they work well over all surfaces (including arid and 

semi arid) and can automatically account for changes in the surface e.g. due to fire or moisture. 

First, we introduce two well-known approaches, the day/night and TISI algorithms, followed by 

an examination of the algorithms and methods that led up to establishment of the TES algorithm. 

4.2.2.1 Day/Night Algorithm 

 The constraint in the day/night algorithm capitalizes on the fact that the emissivity is an 

intrinsic property of the surface and should not change from day- to nighttime observations. The 

day/night algorithm is currently used to retrieve temperature/emissivity from MODIS data in the 

MOD11B1 product (Wan and Li 1997). The method relies on two measurements (day and night), 

and the theory is as follows: Two observations in N bands produces 2N observations, with the 

unknown variables being N-band emissivities, a day- and nighttime surface temperature, four 
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atmospheric variables (day and night air temperature and water vapor), and an anisotropic factor, 

giving N + 7 variables. In order to make the problem deterministic, the following conditions 

must be met: 2N≥N+7, or N≥7. For the MODIS algorithm, this can be satisfied by using bands 

20, 22, 23, 29, 31–33. Although this method is theoretically sound, the retrieval is complicated 

by the fact that two clear, independent observations are needed (preferably close in time) and the 

pixels from day and night should be perfectly co-registered. Errors may be introduced when the 

emissivity changes from day to night observation (e.g., due to condensation or dew), and from 

undetected nighttime cloud. In addition, the method relies on very precise co-registration 

between the day- and nighttime pixel.  

4.2.2.2 Temperature Emissivity Separation Approaches 

 During research activities leading up to the ASTER mission, the ASTER Temperature 

Emissivity Working Group (TEWG) was established in order to examine the performance of 

existing non-deterministic algorithms and select one suitable for retrieving the most accurate 

temperature and/or emissivity over the entire range of terrestrial surfaces. This lead to 

development of the TES algorithm, which ended up being a hybrid algorithm that capitalized on 

the strengths of previous algorithms. In Gillespie et al. (1999), ten inversion algorithms were 

outlined and tested, leading up to development of TES. For all ten algorithms, an independent 

atmospheric correction was necessary. The ten algorithms were as follows:  

1. Alpha-derived emissivity (ADE) method 

2. Classification method 

3. Day-Night measurement 

4. Emissivity bounds method 
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5. Graybody emissivity method 

6. Mean-MMD method (MMD) 

7. Model emissivity method 

8. Normalized emissivity method (NEM) 

9. Ratio Algorithm 

10. Split-window algorithm 

 In this document, we will briefly discuss a few of the algorithms but will not expand 

upon any of them in great detail. The day-night measurement (3), classification (2), and split-

window (10) algorithms have already been discussed in section 4.2.1.  A detailed description of 

all ten algorithms is available in Gillespie et al. (1999). The various constraints proposed in these 

algorithms either determine spectral shape but not temperature, use multiple observations (day 

and night), assume a value for emissivity and calculate temperature, assume a spectral shape, or 

assume a relationship between spectral shape and minimum emissivity.  

 The normalized emissivity method (NEM) removes the downwelling sky irradiance 

component by assuming an 𝜖𝑚𝑎𝑥  of 0.99. Temperature is then estimated by inverting the Planck 

function and a new emissivity found. This process is repeated until successive changes in the 

estimated surface radiances are small. This method in itself was not found to be suitable for 

ASTER because temperature inaccuracies tended to be high (>3 K) and the emissivities had 

incorrect spectral shapes. Other approaches have used a model to estimate emissivity at one 

wavelength (Lyon 1965) or required that the emissivity be the same at two wavelengths 

(Barducci and Pippi 1996). This introduces problems for multispectral data with more than 5 

bands, e.g., ASTER or HyspIRI.  



HYSPIRI LEVEL-2 SURFACE TEMPERATURE AND EMISSIVITY ATBD 

21 

 The ADE method (Hook et al. 1992; Kealy et al. 1990; Kealy and Hook 1993) is based 

on the alpha residual method that preserves emissivity spectral shape but not amplitude or 

temperature. The constraint introduced uses an empirical relationship between spectral contrast 

and average emissivity to restore the amplitude of the alpha-residual spectrum and to compute 

temperature. The average emissivity was used in the relationship to minimize band-to-band 

calibration errors. The TEWG used this key feature of the ADE method in TES, although the 

minimum emissivity instead of average emissivity was used in the empirical relationship 

(Matsunaga 1994). The ADE itself was not fully employed for two primary reasons as discussed 

in Gillespie et al. (1999): 1) ADE uses Wien's approximation, exp(x) - 1 = exp(x), which 

introduces a noticeable "tilt" in the residual spectra that gets transferred to the final emissivity 

spectra; and 2) This issue was easily fixed in the hybrid version of TES. 

 Lastly, the temperature-independent spectral indices (TISI) approach (Becker and Li 

1990) computes relative emissivities from power-scaled brightness temperatures. TISI, however, 

is band-dependent and only recovers spectral shape; furthermore, the values are non unique. To 

retrieve actual emissivities, additional information or assumptions are needed. Other algorithms, 

which only retrieve spectral shape, are the thermal log and alpha residual approach (Hook et al. 

1992) and spectral emissivity ratios (Watson 1992; Watson et al. 1990). Neither of these were 

considered because they do not recover temperature or actual emissivity values. 

 

5 Temperature Emissivity Separation (TES) Algorithm 

 The final TES algorithm proposed by the ASTER TEWG combined some core features 

from previous algorithms and, at the same time, improved on them. TES combines the NEM, the 

ratio, and the minimum-maximum difference (MMD) algorithm to retrieve temperature and a 

full emissivity spectrum. The NEM algorithm is used to estimate temperature and iteratively 
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remove the sky irradiance, from which an emissivity spectrum is calculated, and then ratioed to 

their mean value in the ratio algorithm. At this point, only the shape of the emissivity spectrum is 

preserved, but not the amplitude. In order to compute an accurate temperature, the correct 

amplitude is then found by relating the minimum emissivity to the spectral contrast (MMD). 

Once the correct emissivities are found, a final temperature can be calculated with the maximum 

emissivity value. Additional improvements involve a refinement of 𝜖𝑚𝑎𝑥  in the NEM module 

and refining the correction for sky irradiance using the 𝜀𝑚𝑖𝑛 -MMD final emissivity and 

temperature values. Finally, a quality assurance (QA) data image is produced that partly depends 

on outputs from TES such as convergence, final 𝜖𝑚𝑎𝑥 , atmospheric humidity, and proximity to 

clouds. More detailed discussion of QA is included later in this document. 

 Numerical modeling studies performed by the ASTER TEWG showed that TES can 

recover temperatures to within 1.5 K and emissivities to within 0.015 over most scenes, 

assuming well calibrated, accurate radiometric measurements (Gillespie et al. 1998). 

5.1 Data Inputs 
 

 Inputs to the TES algorithm are the surface radiance, 𝐿𝑠,𝑖 , given by equation (4) (at-

sensor radiance corrected for transmittance and path radiance), and downwelling sky irradiance 

term, 𝐿𝜆
↓  , which is computed from the atmospheric correction algorithm using a radiative 

transfer model such as MODTRAN. Both the surface radiance and sky irradiance will be output 

as a separate product. The surface radiance is primarily used as a diagnostic tool for monitoring 

changes in Earth's surface composition. Before the surface radiance is estimated using equation 

(4), the accuracy of the atmospheric parameters, 𝐿𝜆
↓ , 𝜏𝜆(𝜃), 𝐿𝜆

↑ (𝜃), is improved upon using a 

water vapor scaling (WVS) method (Tonooka 2005) on a band-by-band basis for each 
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observation using an extended multi-channel/water vapor dependent (EMC/WVD) algorithm (for 

more details, see HyspIRI Surface Radiance ATBD). 

5.2 TES Limitations 

 As with any retrieval algorithm, limitations exist that depend on measurement accuracy, 

model errors, and incomplete characterization of atmospheric effects. The largest source of 

inaccuracy currently for ASTER data is the residual effect of incomplete atmospheric correction. 

Measurement accuracy and precision contribute to less of a degree. This problem is compounded 

for graybodies, which have low spectral contrast and are therefore more prone to errors in 

"apparent" MMD, which is overestimated due to residual sensor noise and incomplete 

atmospheric correction. A threshold classifier was introduced by the TEWG to partly solve this 

problem over graybody surfaces. Instead of using the calibration curve to estimate 𝜀𝑚𝑖𝑛  from 

MMD, a value of 𝜀𝑚𝑖𝑛 = 0.983 was automatically assigned when the spectral contrast or MMD in 

emissivity was smaller than 0.03 for graybody surfaces (e.g., water, vegetation). However, this 

caused artificial step discontinuities in emissivity between vegetated and arid areas.  

 At the request of users, two parameter changes were made to the ASTER TES algorithm 

on August 1, 2007, first described in Gustafson et al. (2006). Firstly, the threshold classifier was 

removed as it caused contours and artificial boundaries in the images that users could not tolerate 

in their analysis. The consequence of removing the threshold classifier was a smoother 

appearance for all images but at the cost of TES underestimating the emissivity of graybody 

scenes, such as water by up to 3% and vegetation by up to 2% (Hulley et al. 2008). The second 

parameter change removed the iterative correction for reflected downwelling radiation, which 

also frequently failed due to inaccurate atmospheric corrections (Gustafson et al. 2006). Using 

only the first iteration resulted in improved spectral shape and performance of TES.   
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5.3 TES Processing Flow 

 Figure 7 shows the processing flow diagram for the generation of the cloud masks, land-

leaving radiance, VNIR reflectances, and TES temperature and emissivity, while Figure 8 shows 

a more detailed processing flow of the TES algorithm itself. Each of the steps will be presented 

in sufficient detail in the following section, allowing users to regenerate the code. TES uses input 

image data of surface radiance, 𝐿𝑠,𝑖 , and sky irradiance, 𝐿𝜆
↓ , to solve the TIR radiative transfer 

equation. The output images will consists of six emissivity images (𝜖𝑖) corresponding to HyspIRI 

bands 3–8 and one surface temperature image (T).  

 

Figure 7. Flow diagram showing all steps in the retrieval process in generating the HyspIRI land surface 

temperature and emissivity product starting with thermal infrared (TIR) at-sensor radiances and progressing 

through atmospheric correction, cloud detection, and the temperature emissivity separation (TES) algorithm.  
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Figure 8. Flow diagram of the temperature emissivity separation (TES) algorithm in its entirety, including 
the NEM, RATIO and MMD modules. Details are included in the text, including information about the 
refinement of 𝝐𝒎𝒂𝒙. 

 Surface Radiance: 
𝐿𝑠,𝑖  

Sky Irradiance: 𝐿𝜆
↓  

𝑅𝑖
′ = 𝐿𝑠,𝑖

′ − (1 − 𝜖𝑚𝑎𝑥 ) 𝐿𝜆
↓  Estimate ground- 

emitted radiance 

𝑇𝑁𝐸𝑀 = max⁡(𝐵𝑖
−1 𝑅𝑖

′ ), 𝜖 ′ = 𝑅𝑖
′/𝐵𝑖(𝑇𝑁𝐸𝑀) 

c=c+1 c>N? 

yes 

no 

Cvg? 
𝑅𝑖 − 𝑅𝑖

′  < t2 

    for all 𝑖 

yes 

Dvg? 
no 

𝜖𝑚𝑎𝑥 = 𝜖 ′  

NEM MODULE 

no 

yes 

 ∆2𝑅′/∆𝑐2 > t1 

Divergence 

Convergence 

N=12 

 

  𝜈 = 𝑣𝑎𝑟(𝜖 ′) 

c=1 

𝜈 > 𝑉1?  

'  > ? 

𝑉1 =? 
yes 

𝜖𝑚𝑎𝑥  reset? 

no 

Refine 𝜖𝑚𝑎𝑥 

no 

yes 

 
RATIO MODULE 

𝛽𝑖 = 𝜖𝑖𝑏   𝜖𝑖
𝑏

𝑖=1
 

−1

 

 MMD MODULE 

𝜖𝑚𝑖𝑛 = 𝛼1 − 𝛼2 ∙ 𝑀𝑀𝐷
𝛼3  

𝑀𝑀𝐷 = max 𝛽𝑖 −  min⁡(𝛽𝑖) 

𝝐𝒊
𝑻𝑬𝑺 = 𝛽𝑖  

𝜖𝑚𝑖𝑛

min ⁡(𝛽𝑖)
  

 𝑻𝑻𝑬𝑺 =  𝐵𝑖
−1 𝑅𝑖

′ , 𝜖𝑚𝑎𝑥
𝑇𝐸𝑆     

𝜖𝑚𝑎𝑥
𝑇𝐸𝑆 = max⁡(𝜖𝑖

𝑇𝐸𝑆) 

𝜖𝑚𝑎𝑥 = 0.99 

𝜖𝑚𝑎𝑥 = 0.96 

QA 
Data 
Plane 



HYSPIRI LEVEL-2 SURFACE TEMPERATURE AND EMISSIVITY ATBD 

26 

5.4 NEM Module 

 The normalized emissivity method (NEM) builds upon the model emissivity algorithm 

(Lyon 1965) by allowing the initial 𝜖𝑚𝑎𝑥  value to be consistent for all wavelengths. The role of 

NEM is to compute the surface kinetic temperature, T, and a correct shape for the emissivity 

spectrum. An initial value of 0.99 is set for 𝜖𝑚𝑎𝑥 , which is typical for most vegetated surfaces, 

snow, and water. For geologic materials such as rocks and sand, 𝜖𝑚𝑎𝑥  values are set lower than 

this, typically 0.96, and this value remains fixed. For all other surface types, a modification to the 

original NEM allows for optimization of 𝜖𝑚𝑎𝑥  using an empirically based process. For the 

majority of materials in the ASTER spectral library, a typical range for 𝜖𝑚𝑎𝑥  is 0.94<𝜖𝑚𝑎𝑥 <1.0. 

Therefore, for a material at 300 K, the maximum errors that NEM temperatures should have are 

~±1.5 K, assuming the reflected sky irradiance has been estimated correctly. 

5.5 Subtracting Downwelling Sky Irradiance 

 Generally the effects of sky irradiance are small with typical corrections of <1 K 

(Gillespie et al. 1998). However, the contribution becomes larger for pixels with low emissivity 

(high reflectance) or in humid conditions when the sky is warmer than the surface. Over 

graybody surfaces (water and vegetation), the effects are small because of their low reflectivity 

in all bands. The first step of the NEM module is to estimate ground-emitted radiance, which is 

found by subtracting the reflected sky irradiance from the surface radiance term: 

 𝑅𝑖 = 𝐿𝑠,𝑖
′ − (1 − 𝜖𝑚𝑎𝑥 ) 𝐿𝜆

↓  (5)  

The NEM temperature, which we call 𝑇𝑁𝐸𝑀 , is then estimated by inverting the Planck function 

for each band using 𝜖𝑚𝑎𝑥  and the ground-emitted radiance and then taking the maximum of 

those temperatures. The maximum temperature will most likely be closest to the actual surface 

temperature in the presence of uncompensated atmospheric effects.  
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𝑇𝑖 =
𝑐2

𝜆𝑖
 𝑙𝑛  

𝑐1𝜖𝑚𝑎𝑥

𝜋𝑅𝑖𝜆𝑖
5 + 1  

−1

 (6)  

 

 𝑇𝑁𝐸𝑀 = max⁡(𝑇𝑖) (7)  

The NEM emissivity spectrum is then calculated as the ratio of emitted radiance to that of a 

blackbody with a temperature estimated by 𝑇𝑁𝐸𝑀 : 

 
𝜖𝑖
′ =

𝑅𝑖
𝐵𝑖(𝑇𝑁𝐸𝑀)

 (8)  

The new emissivity spectrum is then used to re-calculate 𝑅𝑖
′ = 𝐿𝑠,𝑖

′ − (1 − 𝜖𝑖
′) 𝐿𝜆

↓ , and the process 

is repeated until convergence, which is determined if the change in 𝑅𝑖  between steps is less than 

a set threshold, 𝑡2, which is set as the radiance equivalent to NEΔT of the sensor. The process is 

stopped if the number of iterations exceeds a limit N, set to 12. Execution of the NEM module is 

also aborted if the slope of 𝑅𝑖  versus iteration, 𝑐, increases such that  ∆2𝑅′/∆𝑐2  > 𝑡1, where 𝑡1 is 

also set to radiance equivalent of NEΔT for the sensor (still to be determined for HyspIRI). In 

this case, correction is not possible, TES is aborted, and NEM values of 𝜖𝑖  and 𝑇𝑁𝐸𝑀  are reported 

in the QA data plane, along with an error flag. TES is also aborted and an error flag recorded if, 

for any iteration, the values of 𝜖𝑖  fall out of reasonable limits, set to 0.5 < 𝜖𝑖 < 1.0. See Figure 8 

for a detailed description of these steps.  

5.6 Refinement of 𝛜𝐦𝐚𝐱 

 Most pixels at HyspIRI resolution (60 m) will contain a mixed cover type consisting of 

vegetation and  soil, rock and water.  The effective maximum emissivity for such pixels will 

therefore vary across the scene and depend on the fractional contribution of each cover type. For 

these cases, the initial 𝜖𝑚𝑎𝑥  = 0.99 may be set to high and refinement of 𝜖𝑚𝑎𝑥  is necessary to 
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improve accuracy of 𝑇𝑁𝐸𝑀 . The optimal value for 𝜖𝑚𝑎𝑥  minimizes the variance, 𝜈, of the NEM 

calculated emissivities, 𝜖𝑖 . The optimization of 𝜖𝑚𝑎𝑥  is only useful for pixels with low emissivity 

contrast (near graybody surfaces) and therefore is only executed if the variance for 𝜖𝑚𝑎𝑥 = 0.99 is 

less than an empirically determined threshold (e.g., 𝑉1 = 1.7 × 10−4 for ASTER ) (Gillespie et 

al. 1998). If the variance is greater than 𝑉1, then the pixel is assumed to predominately consist of  

either rock or soil. For this case, 𝜖𝑚𝑎𝑥  is reset to 0.96, which is a good first guess for most rocks 

and soils in the ASTER spectral library, which typically fall between the 0.94 and 0.99 range. If 

the first condition is met, and the pixel is a near-graybody, then values for 𝜖𝑚𝑎𝑥  of 0.92, 0.95, 

0.97, and 0.99 are used to compute the variance for each corresponding NEM emissivity 

spectrum. A plot of variance 𝜈 versus each 𝜖𝑚𝑎𝑥  value results in an upward-facing parabola with 

the optimal 𝜖𝑚𝑎𝑥  value determined by the minimum of the parabola curve in the range 0.9 <

𝜖𝑚𝑎𝑥 < 1.0. This minimum is set to a new 𝜖𝑚𝑎𝑥 value, and the NEM module is executed again to 

compute a new 𝑇𝑁𝐸𝑀 . Further tests are used to see if a reliable solution can be found for the 

refined 𝜖𝑚𝑎𝑥 . If the parabola is too flat, or too steep, then refinement is aborted and the original 

𝜖𝑚𝑎𝑥  value is used. The steepness condition is met if the first derivative (slope of 𝜈 vs. 𝜖𝑚𝑎𝑥 ) is 

greater than a set threshold (e.g., 𝑉2 = 1.0 × 10−3 for ASTER) and the flatness conditions is met 

if the second derivative is less than a set threshold (e.g., 𝑉3 = 1.0 × 10−3 for ASTER). Finally, if 

the minimum 𝜖𝑚𝑎𝑥  corresponds to a very low 𝜈, then the spectrum is essentially flat (graybody) 

and the original 𝜖𝑚𝑎𝑥  = 0.99 is used. This condition is met if 𝜈𝑚𝑖𝑛 < 𝑉4 (e.g. 𝑉2 = 1.0 × 10−4 

for ASTER). These thresholds will need to be refined for the HyspIRI bands and determined 

empirically. Table 2 shows typical output from various stages of the TES algorithm for pixels 

representing three different surface types: sand dunes, vegetated cropland, and semi-vegetated 

cropland for an ASTER scene on July 15, 2000, over the Imperial Valley, southeastern 
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California. Note the different 𝜖𝑚𝑎𝑥  value for each of these surface types. The dune pixel was set 

to 0.96 due to large variance in emissivity; the fully vegetated pixel was set to 0.983, a typical 

value for a graybody; and 𝜖𝑚𝑎𝑥  for the semi-vegetated pixel needed to be optimized, resulting in 

a final value of 0.969.  

Table 2. Output from various stages of the TES algorithm for three surface types; sand dunes, vegetated 

cropland, and semi-vegetated cropland for an ASTER scene on July 15, 2000, over the Imperial Valley, 

southeastern California.  

 Algodones Dunes Cropland (vegetated) Cropland (semi-vegetated) 

𝝐𝒎𝒂𝒙 0.96 0.983 0.969 

MMD 0.189 0.013 0.028 

𝝐𝒎𝒊𝒏 0.793 0.967 0.944 

𝑻𝑵𝑬𝑴 337.06 K 305.92 K 319.75 K 

𝑻𝑻𝑬𝑺 337.41 K 306.14 K 319.65 K 

 

5.7 Ratio Module 

 In the ratio module, the NEM emissivities are ratioed to their average value to calculate a 

𝛽𝑖  spectrum as follows: 

 𝛽𝑖 =
𝜖𝑖
𝜖 

 (9)  

Typical ranges for the 𝛽𝑖  emissivities are 0.75 < 𝛽𝑖 < 1.32, given that typical emissivities range 

from 0.7 to 1.0. Errors in the 𝛽𝑖  spectrum due to incorrect NEM temperatures are generally 

systematic.  

5.8 MMD Module 

 In the minimum-maximum difference (MMD) module, the 𝛽𝑖  emissivities are scaled to 

an actual emissivity spectrum using information from the spectral contrast or MMD of the 𝛽𝑖  

spectrum. The MMD can then be related to the minimum emissivity, 𝜖𝑚𝑖𝑛 , in the spectrum using 

an empirical relationship determined from lab measurements of a variety of different spectra, 



HYSPIRI LEVEL-2 SURFACE TEMPERATURE AND EMISSIVITY ATBD 

30 

including rocks, soils, vegetation, water, and snow/ice. From 𝜖𝑚𝑖𝑛 , the actual emissivity 

spectrum can be found by re-scaling the 𝛽𝑖  spectrum. First, the MMD of the 𝛽𝑖  spectrum is found 

by: 

 𝑀𝑀𝐷 = max 𝛽𝑖 − min⁡(𝛽𝑖) (10)  

Then MMD can be related to 𝜖𝑚𝑖𝑛  using a power-law relationship: 

 𝜖𝑚𝑖𝑛 = 𝛼1 − 𝛼2𝑀𝑀𝐷
𝛼3 , (11)  

where 𝛼𝑗  are coefficients that are obtained by regression using lab measurements. For the six 

nominal HyspIRI TIR bands between 8 and 12 µm (shown in Figure 1), the values for the 

coefficients were calculated as 𝛼1= 0.997, 𝛼2 = 0.7050, and 𝛼3 = 0.7430. The TES emissivities 

are then calculated by re-scaling the 𝛽𝑖  emissivities: 

 
𝜖𝑖
𝑇𝐸𝑆 = 𝛽𝑖  

𝜖𝑚𝑖𝑛
min⁡(𝛽𝑖)

  (12)  

An example TES emissivity output image for ASTER band 12 (9.1 µm) is shown in Figure 9 (a) 

for an ASTER scene acquired on July 15, 2000, over the Imperial Valley, southeastern 

California. Bare areas, such as the Algodones Dunes running diagonally across the southeast 

corner, generally have emissivity <0.85, while graybody surfaces such as the Imperial Valley 

croplands and Salton Sea in the southwest corner of the image have higher emissivities >0.95. 

Figure 10 shows the differences in emissivity spectra between the NEM and TES output for 

pixels over three different surface types (sand dunes, vegetated cropland, and semi-vegetated 

cropland) for the ASTER Imperial Valley scene. Note that, although both  NEM and TES have 

similar spectral shape, the emissivities of NEM are lower than TES because of errors in the 

initial estimate of 𝜖𝑚𝑎𝑥  in the NEM module. The Algodones Dunes spectrum has high spectral 

contrast that is typical for a quartz spectrum that has the characteristic quartz doublet in the 8–

10-µm region, while the emissivity of vegetation is usually spectrally flat, and high. 
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Figure 9. (a) ASTER land surface emissivity for band 12 (9.1 µm) and (b) surface temperature products 

output from the TES algorithm over the Imperial Valley, southeastern California on July 15, 2000.  

 

 

Figure 10. ASTER derived TES and NEM emissivity spectra for three different surfaces in the ASTER scene 

shown in Figure 9: Algodones Dunes, full vegetation crops, and partially vegetated crops with a soil 

component. Details of the TES and NEM outputs from these spectra are shown in Table 2. 
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For pixels with low spectral contrast (e.g., graybody surfaces), the accuracy of MMD 

calculated from TES is compromised and approaches a value that depends on measurement error 

and residual errors from incomplete atmospheric correction. For ASTER, which has a NEΔT of 

0.3 K at 300 K, measurement error contributes to the apparent contrast, and a method was 

explored to correct the apparent MMD using Monte Carlo simulations. For HyspIRI (NEΔT of 

0.05 K), we expect measurement errors to be minimal and atmospheric effects to be the largest 

contribution to MMD errors. A further problem for graybody surfaces is a loss of precision for 

low MMD values. This is due to the shape of the power-law curve of 𝜖𝑚𝑖𝑛  vs. MMD at low 

MMD values, where small changes in MMD can lead to large changes in 𝜖𝑚𝑖𝑛 . To address these 

issues, the ASTER TEWG initially proposed a threshold classifier for graybody surfaces. If 

MMD<0.03, the value of 𝜖𝑚𝑖𝑛  in equation (12) was set to 0.983, a value typical for water and 

most vegetated surfaces. However, this classification was later abandoned as it introduced large 

step discontinuities in most images (e.g., from vegetation to mixed-cover types).  

The consequence of removing the threshold classifier was that over graybody surfaces 

errors in emissivity could range from 0.01 to 0.05 (0.5 K  to 3 K) due to measurement error and 

residuals errors from atmospheric correction (Gustafson et al. 2006; Hulley and Hook 2009b).  

 For HyspIRI, we expect to use original TES without classification and use the WVS 

method to correct the atmospheric parameters on a pixel-by-pixel basis. This method is described 

in the Surface Radiance ATBD and was not fully developed when the ASTER algorithm was 

developed. 

 For bare surfaces (rocks, soils, and sand), the error in NEM calculated T may be as much 

as 2–3 K, assuming a surface at 340 K due to the fixed assumption of 𝜖𝑚𝑎𝑥  = 0.96. This error can 

be corrected by recalculating T using the TES retrieved maximum emissivity, 𝜖𝑚𝑎𝑥
𝑇𝐸𝑆 , and the  
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atmospherically corrected radiances, 𝑅𝑖 . The maximum emissivity used as correction for 

reflected 𝐿𝜆
↓  will be minimal.  

 

𝑇𝑇𝐸𝑆 =
𝑐2

𝜆𝑚𝑎𝑥
 𝑙𝑛  

𝑐1𝜖𝑚𝑎𝑥
𝑇𝐸𝑆

𝜋𝑅𝑖𝜆𝑚𝑎𝑥
5 + 1  

−1

 (13)  

An example TES surface temperature output image is shown in Figure 9 (b) for the ASTER 

Imperial Valley scene. Bare areas, such as the Algodones Dunes running diagonally across the 

southeast corner, generally have the highest temperatures with T>335 K, while graybody 

surfaces such as the Imperial Valley croplands and Salton Sea in the southwest corner have the 

coolest temperatures with T<315 K.   

 In the original ASTER algorithm, a final correction is made for sky irradiance using the 

TES temperature and emissivities; however, this was later removed, as correction was minimal 

and influenced by atmospheric correction errors. This additional correction will not be used for 

HyspIRI.  

5.9 MMD vs. 𝛜𝐦𝐢𝐧 Regression 

 The relationship between MMD and 𝜖𝑚𝑖𝑛  is physically reasonable and is determined 

using a set of laboratory spectra in the ASTER spectral library v2.0 (Baldridge et al. 2009) and 

referred to as the calibration curve. The original ASTER regression coefficients were determined 

from a set of 86 laboratory reflectance spectra of rocks, soils, water, vegetation, and snow 

supplied by J.W. Salisbury from Johns Hopkins University. One question that needed to be 

answered was whether using a smaller or larger subset of this original set of spectra changed the 

results in any manner. Establishing a reliable MMD vs. 𝜖𝑚𝑖𝑛  relationship with a subset of 

spectral representing all types of surfaces is a critical assumption for the calibration curve. This 

assumption was tested using various combinations and numbers of different spectra (e.g., 
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Australian rocks, airborne data, and a subset of 31 spectra from Salisbury), and all yielded very 

similar results to the original 86 spectra.  

 For HyspIRI, the original 86 spectra were updated to include additional sand spectra used 

to validate the North American ASTER Land Surface Emissivity Database (NAALSED) (Hulley 

and Hook 2009b)  and additional spectra for vegetation from the MODIS spectral library and 

ASTER spectral library v2.0, giving a total of 150 spectra. The data were convolved to the 

nominal HyspIRI bands and 𝜖𝑚𝑖𝑛  and  𝛽𝑖  spectra calculated using equation (9) for each sample. 

The MMD for each spectra was then calculated from the  𝛽𝑖  spectra and regressed to the 𝜖𝑚𝑖𝑛  

values. The relationship follows a simple power law given by equation (11), with regression 

coefficients 𝛼1= 0.997, 𝛼2 = 0.7050, and 𝛼3 = 0.7430, and 𝑅2 = 0.987. Figure 11 shows the 

power-law relationship between MMD and 𝜖𝑚𝑖𝑛  using the 150 lab spectra.  

 

Figure 11. HyspIRI calibration curve of minimum emissivity vs. min-max difference (MMD). The lab data 

(crosses) are computed from 150 spectra consisting of a broad range of terrestrial materials (rocks, sand, soil, 

water, vegetation, and ice). 
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5.10 Atmospheric Effects 

 The accuracy of the atmospheric correction technique used to estimate the surface 

radiance relies on the accuracy of the variables input to the radiative transfer model (e.g., air 

temperature, relative humidity, and ozone). A sensitivity analysis (see Surface Radiance ATBD) 

showed that a change in atmospheric water vapor of 10% leads to a 2.1% change in radiance for 

the nominal HyspIRI band 3 (8.3 µm), which is the most susceptible to atmospheric absorption 

and emission of all bands, while a change in air temperature of 1 K leads to a -1.3% change in 

radiance, both for a standard tropical atmospheric profile. Changes in ozone and aerosol amount 

have much smaller effects, although for ASTER band 5 (9.1 µm), which is closer to the ozone 

absorption region, doubling the ozone resulted in a 2.2% change in radiance. These atmospheric 

errors tend to be highly correlated from band to band, since each channel has a characteristic 

absorbing feature. As a result, the effect on TES output is usually relatively small, but if these 

errors are uncorrelated from band to band then much larger errors can occur, particularly for 

graybodies, where small changes in MMD can significantly alter the shape of the emissivity 

spectrum. For example, over water bodies, errors in emissivity of up to 3% (0.03) have been 

found due to uncompensated atmospheric effects (Hulley and Hook 2009b; Tonooka and 

Palluconi 2005).  

 One method for improving the accuracy of the surface radiance product is to apply the 

WVS method (Tonooka 2005). Using 183 ASTER scenes over lakes, rivers, and sea surfaces, it 

was found that using the WVS method instead of the standard atmospheric correction improved 

estimates of surface temperature from 3 to 8 K in regions of high humidity (Tonooka 2005). 

These are substantial errors when considering the required accuracy of the TES algorithm is  
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~1 K (Gillespie et al. 1998). The WVS method is described in more detail in the HyspIRI 

Surface Radiance ATBD.  

 Figure 12 shows emissivity spectra over the Salton Sea, showing the effects of applying 

the WVS atmospheric correction method on the shape of the emissivity spectrum when 

compared to using the standard (STD) correction method without WVS. The emissivity spectrum 

of water is high (~0.98) and flat and the results in Figure 12 show a dramatic improvement in 

emissivity accuracy in both magnitude (up to 0.06 for ASTER band 11, and 0.09 for MODIS 

band 29) and spectral shape when using the WVS as opposed to the STD method. Because of the 

humid day, where MOD07 PWV values were around 4 cm over the water, the spectral contrast 

of the STD emissivity results are overestimated for ASTER and MODIS data. However, when 

applying the WVS method, the ASTER emissivity spectra fall within 0.015 of the lab-measured 

spectrum, while MODIS emissivity spectra are within 0.005 at all wavelengths. Differences 

between the 3-and 5-band TES algorithm applied to ASTER data were small. 
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Figure 12. Emissivity spectra comparisons for the Salton Sea on June 15, 2000, between ASTER (3-band), 

ASTER (5-band), and MODIS, using the TES algorithm along with lab spectra of water from the ASTER 

spectral library. Results from the water vapor scaling (WVS) method and the standard (STD) atmospheric 

correction are also shown. An estimate of the precipitable water vapor (PWV) from the MOD07 atmospheric 

product indicates very high humidity on this day. 

 

6 Quality Assessment and Diagnostics 

 The T and 𝜖 products will need to be assessed using a set of quality control (QC) flags. 

These QC flags will involve automatic tests processed internally for each pixel and will depend 

on various retrieval conditions such as whether the pixel is over land or ocean surface, the 

atmospheric water vapor content (dry, moist, very humid, etc.), and cloud cover. The data quality 

attributes will be set automatically according to parameters set on data conditions during 

algorithm processing and will be assigned as either "bad," "suspect," or "good." Estimates of the 

accuracy and precision of the T and 𝜖 product will be reported in a separate data plane. At each 

step in the TES algorithm, various performance information will be output, which will give the 
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user a summary of algorithm statistics in a spatial context. This type of information will be 

useful for determining surface type, atmospheric conditions, and overall performance of TES.   

 The architecture of the HyspIRI T and 𝜖 QA data plane will closely resemble that of 

ASTER (Gillespie et al. 1998). It will consist of header information followed by three 8-bit QA 

data planes. The structure of the first QA data plane will consist of three primary fields, which 

are detailed in Table 3: 

1. Data Quality Field: "bad," "suspect," or "good" to be assigned to specific bit patterns. 

2. Cloud Mask Field: Outputs from cloud mask statistics, e.g., optically thick or thin cloud, 

cirrus or contrails, clear, or snow/ice determined from NDSI threshold.  

3. Cloud Adjacency: Clear pixels defined in the cloud mask will be assigned an adjacency 

category dependent on distance to the nearest cloud defined quantitatively by the number of 

pixels (e.g., very close, close, far, very far).  

The structure of the second QA data plane will consist of performance metrics output from 

various stages of the TES algorithm, detailed in Table 4: 

1. The final value of 𝜖𝑚𝑎𝑥  used in the NEM module after optimization (if necessary).  

2. Number of iterations needed to remove reflected downwelling sky irradiance. 

3. Atmospheric opacity test for humid scenes, using 𝐿𝜆
↓ /𝐿′  test. 

4. MMD regime: MMD<0.3 (near-graybody) or MMD>0.3 (likely bare). 
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Table 3. Quality assurance (QA) data plane 1 description of the three data fields: data quality, cloud mask, 

and cloud adjacency. 

Data Field Category Bits Description 

Data Quality "Excellent" 11 Good quality, no further QA info necessary 

 "Good" 10 Good quality, but possible cloud adjacency effects; further QA examination necessary. 

 "Suspect" 01 Out of range data values 

Suspect input quality data flag 

Perimeter effects from thick/thin cloud 

Humid scene 

Fairly calibrated 

 "Bad" 00 Bad pixel labeled in L1A data 

TES algorithm abort flag 

TES algorithm divergence flag 

TES convergence issues (only NEM values output) 

Poorly calibrated, or ocean pixel 

Cloud Mask Thick cloud 11 Optically thick cloud detected with high reflectance 

 Thin cloud 10 Optically thin cloud detected with medium or low reflectance 

 Cirrus 01 Cirrus test indicated cirrus, haze, or jet contrails present 

 Clear 00 No clouds detected 

Cloud 

Adjacency 

Very near 11 Pixel is <5 pixels from nearest cloud 

 Near 10 Pixel within 5–15 pixels of nearest cloud 

 Far 01 Pixel within 15–30 pixels of nearest cloud 

 Very far 00 Pixel >30 pixels from nearest cloud 

 

  

  



HYSPIRI LEVEL-2 SURFACE TEMPERATURE AND EMISSIVITY ATBD 

40 

Table 4. Quality assurance (QA) data plane 2 description of output diagnostics from the TES algorithm. 

Data Field Category Bits Description 

𝜖𝑚𝑎𝑥  >0.98 11 Graybodies (water, vegetation, snow) 

 0.96-0.98 10 Nominal value  

 0.94-0.96 01 Bare surfaces, silicate rocks 

 <0.94 00 Error condition (atmospheric correction) 

Iterations ≥7 11 Slow convergence 

 6 10 Nominal performance 

 5 01 Nominal performance 

 4 00 Fast convergence 

𝐿𝜆
↓ /𝐿′ ≥0.3 11 Warm, humid air; or cold land 

 0.2-0.3 10 Nominal value 

 0.1-0.2 01 Nominal value 

 ≥0.1 00 Dry conditions, or high altitude scene 

MMD ≥0.3 10 Low spectral contrast, graybody surface 

 >0.3 00 High spectral contrast, most bare surfaces 

 

7 Numerical Simulations 

 Numerical simulations will be run on the TES algorithm to analyze performance for a 

wide range of different conditions and surfaces. It has been shown that when TES operates on 

true radiances (error free), temperatures can be recovered to within 1 K and emissivities to 0.01 

for a wide range of surfaces. The performance was related to scatter about the 𝜖𝑚𝑖𝑛 - MMD 

curve, and not to composition of the material.  

 The following simulations will be run using the nominal HyspIRI bands to assess the 

performance of TES: 

1. Sensitivity of TES results to T and 𝜖𝑚𝑎𝑥  from the NEM module for a range of temperatures 

from 240 to 340 K. 
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2. Error dependence of NEM temperatures on initial value selected for 𝜖𝑚𝑎𝑥 . This will be 

accomplished by varying 𝜖𝑚𝑎𝑥  over a wide range (0.94–1) in the NEM module to estimate 

the range in temperatures calculated from NEM. 

3. Error dependence of NEM 𝜖 spectrum with regard to tilt and amplitude for selected values of 

𝜖𝑚𝑎𝑥 .  

4. Sensitivity of NEM and TES outputs to NEΔT. It has been shown that TES is not as sensitive 

to NEΔT as NEM for ASTER data, but this has to be shown with HyspIRI bands. 

5. It has been shown that TES's performance can be improved by using the final TES 

temperature to recalculate the ratio emissivities and the TES emissivities from the calibration 

curve. Improvements of around 0.01 in emissivity were found but depend on the sample 

being retrieved. Tests need to be run with HyspIRI-like datasets to assess whether this extra 

computing time would be worthwhile for improved accuracy. 

6. A comprehensive sensitivity analysis is required to quantify how uncertainties in atmospheric 

parameters relate to TES accuracy. Atmospheric correction errors will be minimized by using 

the WVS method, but variations in the atmospheric parameters from band to band will still 

produce significant error in TES emissivity spectral shape and amplitude.  
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8 Validation Strategies  

8.1 Pre-launch 

It is expected that a beta version of the HyspIRI atmospheric correction production 

algorithm will be ready at least two years prior  to launch, depending on the choice of 

atmospheric profile data, and made available at the Land Processes DAAC (LP DAAC). A 

simulation test dataset will be used to verify that the algorithm runs correctly at the LPDAAC, 

and subsequent changes and improvements to the beta version will be uploaded prior to launch.  

The bulk of the atmospheric correction validation will involve testing and validation with 

JPL's Hyperspectral Thermal Emission Spectrometer (HyTES), an airborne sensor that has been 

developed specifically for support of the HyspIRI mission. The higher spatial (~3-30 m) and 

spectral resolution (256 bands from 7.5 to 12 μm) will help determine the optimal band 

placements for the HyspIRI bands and assist with algorithm development. The first HyTES 

flights are scheduled for late 2012. 

8.2 Post-launch 

While the land surface temperature products from the ASTER TES algorithm have been 

validated by several authors (Coll et al. 2005; Hook et al. 2007; Tonooka and Palluconi 2005), 

far fewer authors have attempted to validate the surface emissivity product (Schmugge and 

Ogawa 2006; Schmugge et al. 2003). Currently, the most comprehensive emissivity validation of 

the ASTER product was performed in validating the North American ASTER Land Surface 

Database (NAALSED) v2.0 emissivity product (Hulley et al. 2009a). NAALSED was validated 

over arid/semi-arid regions using nine pseudo-invariant sand dune sites in the 

western/southwestern USA. The emissivity of samples collected at each of the nine sites was 

determined in the laboratory using a Nicolet 520 FT-IR spectrometer and convolved with the 
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appropriate ASTER system response functions. Validation of emissivity data from space ideally 

requires a site that is homogeneous in emissivity at the scale of the imagery, allowing several 

image pixels to be validated over the target site. HyspIRI will meet this requirement due to its 

high spatial resolution of 60 m, making it unique amongst other spaceborne sensors that provide 

emissivity products at much coarser spatial resolutions, such as MODIS at 1 km. The nine sand 

dune validation sites chosen for the ASTER study and planned for use with HysPIRI are: Great 

Sands National Park, Colorado; White Sands National Monument, New Mexico; Kelso Dunes, 

California; Algodones Dunes, California; Stovepipe Wells Dunes, California; Coral Pink Sand 

Dunes, Utah; Little Sahara Dunes, Utah; Killpecker Dunes, Wyoming; and Moses Lake Basalt 

Dunes, Washington. 

 For HyspIRI we plan to use in-situ data from a variety of ground sites covering the 

majority of different land cover types defined in the International Geosphere-Biosphere 

Programme (IGBP). The sites will consist of water, vegetation (forest, grassland, and crops), and 

barren areas (Table 5).  

Table 5: The core set of global validation sites according to IGBP class to be used for validation and 

calibration of the HyspIRI sensor.  

 

IGBP Class Sites 

0         Water Tahoe, Salton Sea, CA 

1,2      Needle-leaf forest Krasnoyarsk, Russia; Tharandt, Germany; Fairhope, Alaska 

3,4,5   Broad-leaf/mixed forest Chang Baisan, China; Hainich, Germany; Hilo, Hawaii 

6,7      Open/closed shrublands Desert Rock, NV; Stovepipe Wells, CA 

8,9,10 Savannas/Grasslands Boulder, CO; Fort Peck, MT 

12       Croplands Bondville, IL; Penn State, PA; Sioux Falls, SD; Goodwin Creek, MS 

16       Barren  Algodones dunes, CA; Great Sands, CO; White Sands, NM; Kelso Dunes, CA; Namib 
Desert, Namibia; Kalahari Desert, Botswana 
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8.2.1 Water Targets 

 For water surfaces, we will use the Lake Tahoe, California/Nevada automated validation 

site where measurements of skin temperature have been made every two minutes since 1999 and 

are used to validate the mid and thermal infrared data and products from ASTER and MODIS 

(Hook et al. 2007). Water targets are ideal for calval activities because they are thermally 

homogeneous and the emissivity is generally well known. A further advantage of Tahoe is that 

the lake is located at high altitude, which minimizes atmospheric correction errors, and is large 

enough to validate sensors from pixel ranges of tens of meters to several kilometers. The typical 

range of temperatures at Tahoe is from 5°C to 25°C. More recently in 2008, an additional calval 

site at the Salton Sea was established. Salton Sea is a low-altitude site with significantly warmer 

temperatures than Lake Tahoe (up to 35°C), and together they provide a wide range of different 

conditions.  

8.2.2 Vegetated Targets 

 For vegetated surfaces (forest, grassland, savanna, and crops), we will use a combination 

of data from the Surface Radiation Budget Network (SURFRAD), FLUXNET, and NOAA-CRN 

sites. For SURFRAD, we will use a set of six sites established in 1993 for the continuous, long-

term measurements of the surface radiation budget over the United States through the support of 

NOAA's Office of Global Programs (http://www.srrb.noaa.gov/surfrad/). The six sites 

(Bondville, IL; Boulder, CO; Fort Peck, MT; Goodwin Creek, MS; Penn State, PA; and Sioux 

Falls, SD) are situated in large, flat agricultural areas consisting of crops and grasslands and have 

previously been used to assess the MODIS and ASTER LST&E products with some success 

(Wang and Liang, 2009; Augustine et al. 2000). From FLUXNET and the Carbon Europe 

Integrated Project (http://www.carboeurope.org/), we will include an additional four sites to 

http://www.srrb.noaa.gov/surfrad/
http://www.carboeurope.org/
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cover the broadleaf and needleleaf forest biomes (e.g., Hainich and Tharandt in Germany; Chang 

Baisan, China; Krasnoyarsk, Russia), using data from the FLUXNET as well as data from the 

EOS Land Validation Core sites (http://landval.gsfc.nasa.gov/coresite_gen.html). Furthermore, 

the U.S. Climate Reference Network (USCRN) has been established to monitor present and 

future long-term climate data records (http://www.ncdc.noaa.gov/crn/). The network consists of 

114 stations in the continental USA and is monitored by NOAA’s National Climatic Data Center 

(NCDC). Initially, we plan to use the Fairhope, Alaska, and Hilo, Hawaii, sites from this 

network. 

8.2.3 Barren Targets 

 For LST validation over arid regions, we will use a set of nine pseudo-invariant, 

homogeneous sand dune sites in the southwestern USA (Hulley et al. 2009a) which were used 

for validating ASTER and MODIS products and two sites over large sand dune seas in the 

Namib and Kalahari deserts in Southern Africa (Hulley et al. 2009b) for validating AIRS. The 

emissivity and mineralogy of samples collected at these sites have been well characterized and 

are described by Hulley et al. (2009a).  

8.2.3.1 Sand Dune Validation Targets 

Pseudo-invariant ground sites such as playas, salt flats, and claypans have been 

increasingly recognized as optimal targets for the long-term validation and calibration of visible, 

shortwave, and thermal infrared data (Bannari et al. 2005; Cosnefroy et al. 1996; de Vries et al. 

2007). We have found that large sand dune fields are particularly useful for the validation of TIR 

emissivity data (Hulley and Hook 2009a). Sand dunes have consistent and homogeneous 

mineralogy and physical properties over long time periods. They do not collect water for long 

periods as playas and pans might, and drying of the surface does not lead to cracks and fissures, 

http://landval.gsfc.nasa.gov/coresite_gen.html
http://www.ncdc.noaa.gov/crn/
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typical in any site with a large clay component, which could raise the emissivity due to cavity 

radiation effects (Mushkin and Gillespie 2005). Furthermore, the mineralogy and composition of 

sand samples collected in the field can be accurately determined in the laboratory using 

reflectance and x-ray diffraction (XRD) measurements. In general, the dune sites should be 

spatially uniform and any temporal variability due to changes in soil moisture and vegetation 

cover should be minimal. Ideally, the surface should always be dry, since any water on the 

surface can increase the emissivity by up to 0.16 (16%)  in the 8.2–9.2-μm range depending on 

the type of soil (Mira et al. 2007).  

 Figure 13 shows ASTER false-color visible images of each dune site and comparisons 

between the emissivity spectra from NAALSED and the lab measurements. The lab spectra in 

Figure 13 show the mean and standard deviation (spatial) in emissivity for all sand samples 

collected at the site, while the NAALSED spectra give the mean emissivity and combined spatial 

and temporal standard deviation for all observations acquired during the winter (Jan.–Mar.) and 

summer (July–Sept.) time periods. The results show that TES-derived emissivity from ASTER 

data captures the spectral shape of all the dune sands very well. The quartz doublet centered 

around ASTER band 11 (8.6 µm) is clearly visible for Algodones Dunes samples, and the 

characteristic gypsum minimum in ASTER band 11 (8.6 µm) is evident from the White Sands 

samples. 

 Seasonal changes in vegetation cover, aeolian processes such as wind erosion, deposition 

and transport, and daily variations in surface soil moisture from precipitation, dew, and snowmelt 

are the primary factors that could potentially affect the temporal stability and spatial uniformity 

of the dune sites. Field observations during the spring and early summer of 2008 revealed that 

the major portion of the dune sites was bare, with the exception of Kelso and Little Sahara, 
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which contained sparse desert grasses and reeds on the outer perimeter of the dune field and in 

some interdunal areas. Nonetheless, this does not mean the other seven dune sites did not have 

vegetation in the past, since 2000. The presence of soil moisture would result in a significant 

increase in TIR emissivity at the dune sites, caused by the water film on the sand particles 

decreasing its reflectivity (Mira et al. 2007; Ogawa et al. 2006), particularly for HyspIRI bands 

3–5 in the quartz Reststrahlen band. However, given that the majority of dune validation sites are 

aeolian (high winds), at high altitude (low humidity), and in semi-arid regions (high skin 

temperatures), the lifetime of soil moisture in the first few micrometers of the surface skin layer 

as measured in the TIR is most likely small due to large sensible heat fluxes and, therefore, high 

evaporation rates, in addition to rapid infiltration. Consequently, we hypothesize that it would 

most likely take a very recent precipitation event to have any noticeable effect on remote-sensing 

observations of TIR emissivity over these types of areas. 

 For LST validation over the sand dune sites, we will use a recently established radiance-

based (R-based) validation method (Coll et al. 2009; Wan and Li 2008). The advantage of this 

method is that it does not require in-situ measurements, but instead relies on atmospheric profiles 

of temperature and water vapor over the site and an accurate estimation of the emissivity. The 

method involves using a radiative transfer model such as MODTRAN (Berk et al. 2005) with the 

input profiles and surface emissivity to compute two TOA radiance values corresponding to two 

LST values close to the retrieved LST value in an atmospheric window region (e.g., 11 µm). The 

theoretically correct LST is then estimated by linear interpolation between the two TOA radiance 

values and the retrieved LST value. The advantage of the R-based method is that it can be 

applied to a large number of global sites where the emissivity is known (e.g. from field  
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Figure 13. ASTER false-color visible images (top) and emissivity spectra comparisons between ASTER TES 

and lab results for Algodones Dunes, California; White Sands, New Mexico; and Great Sands, Colorado 

(bottom). Squares with blue dots indicate the sampling areas. ASTER error bars show temporal and spatial 

variation, whereas lab spectra show spatial variation. 

 

measurements) and during night- and daytime observations to define the diurnal temperature 

range. Figure 14 shows an example of the R-based method applied to Atmospheric Infrared 

Sounder (AIRS) LST data over the Namib Desert using observations from 2003 to 2009. 

Emissivity data from lab measurements of sand samples collected from the Namib Desert and 

NCEP atmospheric profile data were used for input to the AIRS SARTA radiative transfer 

model. 

 Figure 15 shows emissivity spectra from sand dune samples collected at various sites in 

the southwestern USA. The spectra cover a wide range of emissivities in the TIR region. These 
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sites will be used to validate HyspIRI emissivity and temperature products using the R-based 

method.  

 

 

Figure 14. An example of the Radiance-based method applied to Atmospheric Infrared Sounder (AIRS) LST 

data over the Namib Desert using observations from 2003 to 2009. Emissivity data from lab measurements of 

sand samples collected from the Namib Desert and atmospheric profiles from NCEP were used for input to 

the SARTA radiative transfer model, specifically designed for AIRS data.  
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Figure 15. Laboratory-measured emissivity spectra of sand samples collected at 10 pseudo-invariant sand 

dune validation sites in the southwestern USA. The sites cover a wide range of emissivities in the TIR region.
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