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TABLE S.1 Science and Applications Priorities

Science and Applications
Area

Coupling of the Water
and Energy Cycles

Ecosystem Change

Extending and
Improving Weather and
Air Quality Forecasts

Reducing Climate
Uncertainty and
Informing Societal
Response

Sea Level Rise

Surface Dynamics,
Geological Hazards and
Disasters

for the Decade 2017-2027

Science and Applications Questions
Addressed by MOST IMPORTANT Objectives

(H-1) How is the water cycle changing? Are changes in evapotranspiration and
precipitation accelerating, with greater rates of evapotranspiration and thereby
precipitation, and how are these changes expressed in the space-time distribution of
rainfall, snowfall, evapotranspiration, and the frequency and magnitude of extremes
such as droughts and floods?

(H-2) How do anthropogenic changes in climate, land use, water use, and water
storage interact and modify the water and energy cycles locally, regionally and
globally and what are the short- and long-term consequences?

(E-1) What are the structure, function, and biodiversity of Earth’s ecosystems, and
how and why are they changing in time and space?

(E-2) What are the fluxes (of carbon, water, nutrients, and energy) between
ecosystems and the atmosphere, the ocean and the solid Earth, and how and why are
they changing?

(E-3) What are the fluxes (of carbon, water, nutrients, and energy) within
ecosystems, and how and why are they changing?

(W-1) What planetary boundary layer (PBL) processes are integral to the air-surface
(land, ocean and sea ice) exchanges of energy, momentum and mass, and how do
these impact weather forecasts and air quality simulations?

(W-2) How can environmental predictions of weather and air quality be extended to
forecast Earth System conditions at lead times of 1 week to 2 months?

(W-4) Why do convective storms, heavy precipitation, and clouds occur exactly
when and where they do?

(W-5) What processes determine the spatio-temporal structure of important air
pollutants and their concomitant adverse impact on human health, agriculture, and
ecosystemns?

(C-2) How can we reduce the uncertainty in the amount of future warming of the
Earth as a function of fossil fuel emissions, improve our ability to predict local and
regional climate response to natural and anthropogenic forcings, and reduce the
uncertainty in global climate sensitivity that drives uncertainty in future economic
impacts and mitigation/adaptation strategies?

(C-1) How much will sea level rise, globally and regionally, over the next decade
and beyond, and what will be the role of ice sheets and ocean heat storage?

(S-3) How will local sea level change along coastlines around the world in the next
decade to century?

(S-1) How can large-scale geological hazards be accurately forecasted and
eventually predicted in a socially relevant timeframe?

(S-2) How do geological disasters directly impact the Earth system and society
following an event?

(S-4) What processes and interactions determine the rates of landscape change?

VERY IMPORTANT (summarized)

IMPORTANT (summarized)

(H-4) Influence of water cycle on natural (H-3) Fresh water availability and impacts on ecosystems/society

hazards and preparedness

(W-6) Long-term air pollution trends and impacts

(W-3) Influence of Earth surface variations (W-7) Processes influencing tropospheric ozone and its

on weather and air quality

atmospheric impacts

(C-3) Impacts of carbon cycle variations on (W-8) Methane variations and impacts on tropospheric

climate and ecosystems

(C-4) Earth system response to air-sea

interactions

composition and chemistry
(W-9) Cloud microphysical property dependence on aerosols and
precipitation
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WORKING GROUPS

ET relevance
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Principal outstanding ET knowledge gaps;

Top-10 ET research and applied science questions
1.

2.

9.

QAGU

. COMMENTARY
How are natural and managed ecosystems responding to

changes in climate and water availability?

How much water do different plant assemblages in
ecosystems use and how much do they need?

What is the timing of water use among ecosystems, and how
does that vary diurnally, seasonally, and annually?

How do changes in plant water availability, access, use, and
stress regulate photosynthesis and productivity? |

Water Resources Research

The future of evapotranspiration: Global requirements
for ecosystem functioning, carbon and climate feedbacks,
agricultural management, and water resources

Joshua B. Fisher? (), Forrest Melton2, Elizabeth Middleton3, Christopher Hain%5, Martha Andersons,
Richard Allen?, Matthew F. McCabe# 2, Simon Hook?, Dennis Baldocchi® (), Philip A. Townsend??,
Ayse Kilic'!, Kevin Tu'2 (), Diego D. Miralles'3 (), Johan Perret'4, Jean-Pierre Lagouarde’s,

Duane Waliser? (), Adam J. Purdy’ (), Andrew French6 (), David Schimel, James S. Famiglietti’,
Graeme Stephens’ (), and Eric F. Wood'?

'Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, 2NASA Ames Research Center
Cooperative for Research in Earth Science in Technology, Moffett Field, California, USA, >NASA Goddard Space Flight
Center, Greenbelt, Maryland, USA, *NASA Marshall Space Flight Center, Huntsville, Alabama, USA, SNOAA National
Environmental Satellite, Data, and Information Service, College Park, Maryland, USA, °U.S. Department of Agriculture,
Beltsville, Maryland, USA, “University of Idaho, Kimberly, Idaho, USA, ®king Abdullah University of Science and
Technology, Thuwal, Saudi Arabia, °University of California, Berkeley, California, USA, mUnivers'\ty of Wisconsin, Madison,

, iversity of Nebraska-Lincoln, Linc , '?DuPont Pioneer, Johnston, lowa, U 3Ghent
University, Ghent, Belgium, "“EARTH University, San, José, a , "INRA, ISPA UMR 1391, Villenage D'Ornon, France,
'5U.S. Department of Agriculture, Maricopa, Arizona, USA, '”Princeton University, Princeton, New Jersey, USA

How is ET partitioned into transpiration, soil evaporation, and interception evaporation, and how are these
components differentially impacted by a changing temperature, CO,, and hydrologic regime?
How does ET redistribute water.in a strengthening or weakening global hydrological cycle, and what are the

underlying causes and consequences?

How do changes in ET amplify or dampen climate feedbacks, land-atmosphere coupling, and

hydrometeorological extremes at local to regional scales?

Can ET observations help constrain and improve short-term weather prediction and future climate projections

at seasonal to interannual timescales?

Can we unify the water, carbon, and energy cycles globally from space-borne observations, with ET as the

linking variable?

10.How can information on ET be applied to optimize sustainable water allocations; agricultural water use, food
production, ecosystem management, and hence water and food security in a changing climate to meet the

demands of a growing population?
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th accuracy: The h|gher the accuracy, the
greater the ability to differentiate water use and

water stress among different species and
ecosystems, as well as to enable more effective
water management (<10% reIatlve error)







ﬂ% ngh spatial resolution: The Iength sAcaIes requwed
- to detect spatially heterogeneous responses to water ¢
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Higtemporal resolution: ET is highly variable from day

to day; management necessitates accurate ET information
provided in sync with daily irrigation schedules (daily).
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Long-term monitoring: Because heatwaves, droughts
and drought responses evolve over the course of
multiple years, and as climate becomes increasingly
variable, the need for long-term observations will
likewise be increasingly critical (decadal scale).
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Large spatial coverage: Global coverage enables
detection of large-scale droughts, is necessary to
understand climate feedbacks, is required to close
the global water and energy budgets, and ensures
consistency and dependability in measurements
across regions and shared resources (global land). |
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Climate model uncertainty in WUE
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Geosci. Model Dev. Discuss., 8, 6809-6866, 2015
www.geosci-model-dev-discuss.net/8/6809/2015/
doi:10.5194/gmdd-8-6809-2015

© Author(s) 2015. CC Attribution 3.0 License.

This discussio

s/has been u review for the urnal Geoscientific Model

Development (GMD). Please refer tt corresponding final paper in GMD if available

The GEWEX LandFlux project: evaluation
of model evaporation using tower-based
and globally-gridded forcing data

M. F. McCabe', A. Ershadi’, C. Jimenez’, D. G. Miralles®, D. Michel*, and
E. F. Wood®

and Forest Metcorology 187 (2014) 4661
Contents lists available at ScienceDirect
) Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet
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Multi-site evaluation of terrestrial evaporation models using
FLUXNET data
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Remote Sensing of Environment 115 (2011) 801-82
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Global estimates of evapotranspiration for climate studies using multi-sensor remote
sensing data: Evaluation of three process-based approaches

Raghuveer K. Vinukollu **, Eric E. Wood *, Craig R. Ferguson *, Joshua B. Fisher
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Manuscript prepared for Hydrol. Earth Syst. Sci.
with version 2015/04/24 7.83 Copernicus papers of the I5TEX class copernicus.cls.
Date: 4 September 2015

The WACMOS-ET project - Part 1: Tower-scale

evaluation of four observation-based
evapotranspiration algorithms

D. Michel', C. Jiménez>?, D.M. Miralles**, M. Jung®, M. Hirschi', A. Ershadi’,

B. Martens’, M.E. McCabe’, J.B. Fisher®, Q. Mu®, Z. Su'®, S.I. Seneviratne',
E.F. Wood!!, and D. Ferndndez-Prieto'?

ol % 0 50 100 150 200 250 300 350 400 450

Measured ET (W m?)

stations as independent metrics of performance, the tower-based analysis indicated
that PT-JPL provided the highest overally statistical performance (0.72; 61 Wm'2;
0.65), followed closely by GLEAM (0.68,; B4Wm™2; 0.62), with values in parenthe-

Fisher, J.B., Tu, K.P,, Baldocchi, D.D., 2008. Remote Sensing of Environment.
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ET Spaceborne Measurement Requirements

Parameters

Spatial resolution
(m)-TIR

Spatial resolution
(m) - VSWIR

Return Cycle
(days) - TIR

Return Cycle
(days) - VSWIR

Number of bands -
TIR

Number of bands -
VSWIR

Coverage

Minimal

Optimum

>15

Global land

Landsat 8

Global

MODIS

Global

ECOSTRESS

1SS
coverage




Science / Applied
Science Question

How do different

plants respond to

changes in water
availability?

Science / Applied

. L. Partners
Science Objective(s)
AS-I. Determine
water use in natural FLUXNET
ecosystems.
AS-1I .
. Ecological
Determine water .
community
stress under water
limitation.
AS-lll. Determine .
] Agricultural
water requirements .
in managed community (e.g.,
USDA)
ecosystems.

Partner Data
Baseline

100s of flux sites
and intensive
measurement sites

Physical Parameters

LST with uncertainty better than 1 K;
spatial resolution < 100 m; temporal
resolution < 1 week; global coverage,
natural vegetation; temporal continuity
3 years

NDVI, albedo, ea, Ta with uncertainty
better than 10%; spatial resolution < 100
m; temporal resolution < 1 week; global
coverage; temporal continuity 3 years

LST with uncertainty better than 1 K;

spatial resolution < 100 m; temporal

resolution < 1 week; global coverage;
temporal continuity 3 years

NDVI, albedo, ea, Ta with uncertainty
better than 10%; spatial resolution < 100
m; temporal resolution < 1 week; global
coverage; temporal continuity 3 years

LST with uncertainty better than 1 K;
spatial resolution < 100 m; temporal
resolution < 1 week; global coverage,
managed vegetation; temporal
continuity indefinitely

NDVI, albedo, ea, Ta with uncertainty
better than 10%; spatial resolution < 100
m; temporal resolution < 1 week; global
coverage; temporal continuity 3 years

Observables

TIR with uncertainty better than 1 K;
spatial resolution < 100 m; temporal
resolution < 1 week; global coverage,
natural vegetation; temporal
continuity 3 years

VSWIR with uncertainty better than
10%; spatial resolution < 100 m;
temporal resolution < 1 week; global
coverage; temporal continuity 3
years

TIR with uncertainty better than 1 K;

spatial resolution < 100 m; temporal

resolution < 1 week; global coverage;
temporal continuity 3 years

VSWIR with uncertainty better than
10%; spatial resolution < 100 m;
temporal resolution < 1 week; global
coverage; temporal continuity 3
years

TIR with uncertainty better than 1 K;
spatial resolution < 100 m; temporal
resolution < 1 week; global coverage,
managed vegetation; temporal
continuity 3 years

VSWIR with uncertainty better than
10%; spatial resolution < 100 m;
temporal resolution < 1 week; global
coverage; temporal continuity 3
years

Requirements

Anticipated /
Desired
Capability

Mission Functional
Requirements

2020

2020

2020

DS Reference



Conclusions

* Decadal Survey: ET a top science and applications priority throughout
o Ecosystems: key biodiversity functional trait
o Water & Energy Cycle: central coupling variable
o Weather: cloud formation
o Climate: drying, water-carbon cycle feedbacks

« Urgency: droughts, food & water security
* Challenge/Uniqueness: no current mission captures all ET requirements

* TIR+VSWIR: need together for ET
o Function of TIR (radiation), VNIR (vegetation), and VSWIR (atmosphere)
o Need tight geolocation for spatial requirements
o Need consistency and reliability between measurements
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MODIS Bands Necessary for Evapotranspiration and their Correspondence to HyspIRI Prototypes

Band # Wavelength Products Variables HyspIRI Prototypes |MODIS Predecessors
3/0.459 um 0.479 um |MODO04, MOD13, MCD43 albedo, AOT, VI AVIRIS, AVIRIS-NG Landsat
4/0.545 um 0.565 um |MODO04, MOD13, MCD43 albedo, AOT, VI AVIRIS, AVIRIS-NG Landsat, AVHRR
1/0.620 um 0.670 um [MODO04, MODO06, MOD13, MCD43 |albedo, AOT, COT, VI |AVIRIS, AVIRIS-NG Landsat
2/0.841 um 0.876 um [MODO04, MODO06, MOD13, MCD43 |albedo, AOT, COT, VI|AVIRIS, AVIRIS-NG Landsat, AVHRR
5(1.230 um 1.250 um |MODO04, MOD06, MOD13, MCD43 |albedo, AOT, COT, VI|AVIRIS, AVIRIS-NG
6(1.628 um 1.652 um |MODO04, MOD06, MOD13, MCD43 |albedo, AOT, COT, VI|AVIRIS, AVIRIS-NG Landsat, AVHRR
7(2.105 um 2.155 um |MODO04, MODO06, MOD13, MCD43 |albedo, AOT, COT, VI |AVIRIS, AVIRIS-NG Landsat

20/3.660 um 3.840 um |(MODO6 COoT HIRS, AVHRR
25|4.482 um 4.549 um [(MODO7 Ta, Td HIRS

Not Covered
27/6.535 um 6.895 um |(MODO7 Ta, Td HIRS
28|7.175 um 7.475 um |MODO7 Ta, Td HIRS
29/8.400 um 8.700 um |MODO07, MOD21 Ta, Td, LST HyTES, ECOSTRESS  |HIRS
30(9.580 um 9.880 um |(MODO7 Ta, Td HyTES, ECOSTRESS  |[HIRS
31{10.780 um |11.280 um |MODO06, MOD0O7, MOD11, MOD21 (Ta, Td, COT, LST HyTES, ECOSTRESS  |HIRS, AVHRR
32(11.770 um |12.270 um |MODO7, MOD11, MOD21 Ta, Td, LST HyTES, ECOSTRESS |HIRS, AVHRR
33(13.185um |13.485 um |MODO7 Ta, Td HIRS
34(13.485um |13.785 um |MODO7 Ta, Td HIRS

Not Covered
35(13.785 um |14.085 um |MODO7 Ta, Td HIRS
36(14.085 um |14.385 um |MODO7 Ta, Td HIRS
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