The Application of SBG-Class Observations to Monitor Volcanic Gas and Aerosol Plumes in Hawaii

Vincent J. Realmuto
David R. Thompson
Jet Propulsion Laboratory,
California Institute of Technology

HyspIRI/SBG 2018 Science Workshop

© 2018, All Rights Reserved.

Government sponsorship acknowledged.

Contributors

Mike Abrams

Jet Propulsion Laboratory/

California Institute of Technology

Elsa Abbott

Jet Propulsion Laboratory/

California Institute of Technology

Steven Businger University of Hawaii – Manoa

Tamar Elias USGS - Hawaiian Volcano Observatory

Lacey Holland University of Hawaii – Manoa

Keith Horton FlySpec Incorporated

Florian Schwandner

University of California –
Los Angeles

Howard Tan

Jet Propulsion Laboratory/
California Institute of Technology

HyspIRI-Hawaii Volcanology Website

- https://volcanologyhyspiri.jpl.nasa.gov
- Links to Archived AVIRIS, MASTER, and HyTES Data
- Repository for High-Level Data Products (e.g., radiosonde)
- Links to Current PI Investigations

Simulated HyspIRI Data: Volcanology at Mt. Effici

Five focus areas: (click on focus area for details)

- Understanding Basaltic Volcanic Processes by Remotely Measuring the Links between Vegetation Health and Extent and Volcanic Gas and Thermal Emissions using HyspIRI-like VSWIR and TIR Data
- In Situ Validation of Remotely Sensed Volcanogenic Emissions Retrievals using Aerostats and UAVs
- Quantifying Active Volcanic Processes and Mitigating their Hazards with HyspIRI Data
- Mapping the Composition and Chemical Evolution of Plumes from Kilauea Volcano: Preparing for the Use of HyspIRI Data to Monitor the Impact of Volcanic Plumes on Air Quality
- Developing an Automated Volcanic Thermal Alert Algorithm using Moderate Spatial Resolution VSWIR and TIR Data: Implications for the Future HyspIRI Mission

Howard Tan has collected the Radiosonde sounding data for the 2018 Hawaii Campaign. The data is composed of the following files available as a complete zip file:

- 1. KML Google Earth Path of the radiosonde
- 2. modtranByHeight simple modtran input file. 10m height intervals
- 3. SIGLVLS significant levels for Temperature/Relative Humidity, and Wind speed/Direction
- 4. Summary file
- 5. TimeIntFull soundings by 5 second time intervals

Kīlauea Airborne Science Campaigns Jan – March 2017, Jan – Feb 2018

MODIS/ASTER Airborne Simulator (MASTER) TIR Observations to Map SO₂ Emissions at Summit of Kīlauea

Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) VSWIR Observations to Map Changes in Optical Depth Related to SO₄ Aerosols

In 2018 - Hyperspectral Thermal Emission Spectrometer (HyTES) to Map SO₂ and SO₄ Aerosols

Cockpit of ER-2
Photo Courtesy of Stu Broce

Kīlauea Summit: Location Map

Optimal Estimation for Iterative Fitting of Surface and Atmospheric Spectra

Combined Parametric Models for Surface, Atmosphere, and Instrument Properties Makes optimal, weighted use of *a priori* knowledge of instrument and domain

- Tropical Atmospheric Temperature/Humidity Profiles
- Scattering Aerosol Model
- Surface Reflectance Sampled In-Scene

AVIRIS-C f170127t01p00r16 (subset, visible bands)

Combined estimate of H₂O vapor, AOD, surface reflectance and temperature

Down-wind Changes in AOD are Proxies for Formation of SO₄ Aerosols

HyTES Deployment in 2018 Enables Unique Identification of Plume Components

MASTER Resolution

- Spectra of SO₂ and SO₄ are Similar
- Broad Absorption
 Centered near
 8.7 μm

HyTES Resolution

- Resolves "Doublet" in SO₂ Spectrum
- Detect SO₄ Absorption
 Features at 10 and
 11 μm

HyTES Brightness Temperature Difference Spectra

Kilauea Volcano 2018-01-18 21:15 UTC (11:15 HST)

- Imaging Spectroscopy: Fine spectral resolution of HyTES (0.02 μm) enables unique identification of SO₂
- Spectrum A indicates stronger SO₂ absorption than Spectrum B
- Absence of SO₄ Spectral Features Decrease in SO₂ result of dispersion, rather then conversion of SO₂ gas to SO₄ aerosols (conversion rate of ~8% /hr)

Summit - Lower East Rift Zone (LERZ) Eruption

- Fissures open in Leilani Estates on May 3
- SO₂ emission rates in excess of 15,000 t/d
- Ash eruptions at Summit began May 15
- Ash plumes heights up to 10 km

500 + meters of subsidence at Summit

Towards an Automated Implementation of TIR-Based Retrieval Procedures for Terra, Aqua, SNPP, NOAA-20, ECOSTRESS, and SBG...

Plume Tracker Interactive Analysis Tool

- Radiative Transfer (RT) Based Retrieval Procedures for Surface Temperature and Gas Concentration
- RT Processing is Computationally-Expensive
- Focus Computations on User-Defined Regions-of-Interest

Automated Procedures Should Integrate Plume Detection with Retrieval Algorithms

Surface Emissivity is a Confounding Factor for SO₂ Detection

Solid Lines: Forward model spectra generated for SO₂-free atmospheric profiles.
Surface compositions of (a) quartz sandstone, (b) pahoehoe lava from Kilauea Volcano, and (c) gypsum

Estimate Surface Temperature and SO_2 Concentration Assuming $\varepsilon = 1$ (Blackbody)

Retrieval Algorithm has Two Steps: Step 1 (Dashed Lines): Temperature Retrieval Finds the Lowest Surface Temperature with the Constraint that Model Spectra ≥ Observed Spectra

Step 2 (Broken Lines): SO₂ Retrieval based on Estimated Surface Temperature.
Retrieval Attempts to "Fit" Emissivity Minima by Adding SO₂

The false detections are largest for (a) quartz sandstone and (c) gypsum, due to the overlap between emissivity minima and SO_2 absorption (8 – 9.5 μ m)

As a rule, the assumption of blackbody emissivity for exposed (non-vegetated) surfaces will lead to false detections of SO₂

Plume Detections Improve with Corrections for Surface Emissivity and Atmospheric Effects

(a) Brightness Temperature Difference (BTD) in ASTER Channel 11.

Plume marked by BTD of -12 K or larger Emissivity effects result in BTD as large as -6 K outside of the plume.

The histogram shows an offset of -2 K.

(b) BTD following a correction for surface emissivity.

Emissivity effects suppressed, but the BTD remains non-zero outside of the plume. The histogram shows an offset of -2 K.

(c) Misfit map resulting from retrievals of surface temperature.

Retrievals take emissivity and atmospheric effects into account.

Plume is delineated by the highest misfit (≥ 1.0), and the misfit approaches zero outside of the plume.

The histogram shows no offset, and over 90% of the misfit values are less than 0.5.

Bardarbunga Volcano (Iceland), 5 September 2014

- a) Surface temperature estimation does not consider volcanic plumes or meteorological (met) clouds
- b) Misfit map shows the locations of plumes (red oval) and met clouds
- c) Met clouds are identified by comparing surface temperature with air temperature at plume altitude

- d) Combination of cloud mask and misfit map improves the discrimination of volcanic plumes
- e) Estimation of SO₂ column density is confined to the locations, or pixels, identified by the masked misfit map
- f) SO₂ map is filtered to minimize the "holes" corresponding to the locations of met clouds.

GAS COLUMN DENSITY

455

13.0

19.0

875 (DU)

25.0 (gm⁻²)

245

7.0

1.0

New Retrieval Procedure Successful

- Moderate to High SO₂
 Concentrations
- Plume Altitude > 3 km ASL
- Arctic Atmospheric
 Environment
 (Atmosphere is Cool and Dry)

What About Low-lying Plumes in Tropical Environments?

OMPS (UV) and VIIRS (TIR) Collocated on S-NPP and NOAA-20 Platforms
Contemporaneous Retrievals of Total SO₂
Mass from S-NPP are in Excellent
Agreement (149.5 vs. 150 kilotonnes)

ASTER VNIR

2018-05-22 21:01 UTC

ASTER TIR

Cloud Mask

2018-05-22 21:01 UTC

SO₂ Column Density

HVO Integrated ransects (kg/m)*	ASTER Integrated Transects (kg/m)
37.52	T1: 25.37
30.34	T2: 20.75

45.03 T3: 24.20

T4: 19.94 38.10

Ave: 37.75 ± 5.2 T5: 25.90

*USGS/HVO data

analyses are

preliminary, and not for distribution T6: 23.98

T7: 41.00

Ave: 25.88 ± 6.5

Spatial

L1: 38 X 67 m

Resolution L2: 70 X 70 m

Thank You for Your Attention.

ASTER-Based Estimates of SO₂ Column Density

- Column Density
 can scale inversely
 with size of IFOV
 (pixel)
- Total Mass is sum of Column Density over all pixels
- Total Mass useful for comparing SO₂ retrievals based on different airborne or satellite instruments
- How do we compare against field spectrometer measurements?

Agreement Between ASTER-Based Transects of SO₂ Plume and Vehicle Traverse Beneath Plume

- Average ASTER
 Transect:
 26.8 ± 1.4 kg/m
 (11:01 AM local time)
- HVO Vehicle Traverse: 32.8 kg/m (4:28 PM)*
- * USGS/HVO results are preliminary and not for distribution

