VSWIR L1 & L2: Radiance and Reflectance Algorithm Maturity, Calibration, and Validation

David R. Thompson¹
Robert O. Green
Bo-Cai Gao²
Brian D. Bue
John Chapman
Michael L. Eastwood
Mark Helmlinger

Jet Propulsion Laboratory, California Institute of Technology

¹david.r.thompson@jpl.nasa.gov ²Naval Research Laboratory Sven Geier Yumi Iwashita Sarah Lundeen Ian McCubbin Vincent Realmuto Winston Olson Duvall

Copyright 2018 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged.

Agenda

Instrument calibration: radiometric and spectral

2. Estimation of atmosphere and surface properties

3. Field validation methods and results

Typical Analysis Chain

Lambertian Reflectance (HDRF)

Radiance at sensor mW/nm/cm²/sr

Raw Digital Numbers

[Gao et al., 1993; Green et al., 1998, Thompson et al., 2015]

Calibration Conventions

Working backwards from the FPA

 Electronic effects - the time-dependent radiometric response of each detector

Working backwards from the FPA

1. Electronic effects - the time-dependent radiometric response of each detector

2. Optical effects - the spatial and spectral "view" of each detector

Correct dark offset **Correct pedestal shift Correct panel ghost Correct flat field Correct bad pixels** Statistical destriping **Correct crosstrack scatter Correct spatial scatter**

Working backwards from the FPA

 Electronic effects - the time-dependent radiometric response of each detector Correct dark offset

Correct pedestal shift

Correct panel ghost

Correct flat field

Correct bad pixels

Statistical destriping

Correct crosstrack scatter

Correct spatial scatter

Apply radiometric coefficients

- Optical effects the spatial and spectral "view" of each detector
- 3. Calibration to the S.I. (absolute spectroradiometry)

In-flight refinement of spectral calibration via atmospheric features

Feature positions provide accurate wavelength calibration

Depths and shapes provide refined information on spectral response function

In-flight refinement of spectral calibration via atmospheric features

Feature positions provide accurate wavelength calibration

Depths and shapes provide refined information on spectral response function

Apparent Reflectance

Model

Fit

Empirical channel positions

[Thompson et al., Atmospheric Measurement Techniques 2015]

Empirical spectral response

[Thompson et al., *Remote Sensing of Environment* 2018]

Death Valley Transect, 2014 (visible RGB)

Empirical spectral response

[Thompson et al., *Remote Sensing of Environment* 2018]

Death Valley Transect, 2014 (visible RGB)

david.r.thompson@jpl.nasa.gov

Empirical spectral response

[Thompson et al., *Remote Sensing of Environment* 2018]

Nominal response

Atmospheric fit

Laboratory measurement

Agenda

Instrument calibration: radiometric and spectral

2. Estimation of atmosphere and surface properties

3. Field validation methods and results

Atmospheric Correction

9/20/18

Atmospheric Correction

Radiance Spectrum

H₂O Vapor maps

[Thompson et al., Surveys in Geophysics 2018]

Central Valley Agriculture (HyspIRI Santa Barbara Box)

Improving accuracy with simultaneous fitting of water vapor, ice, and liquid

[Thompson et al., *Remote Sensing of Environment* 2015] [Green et al., *Water Resources Research* 2006]

Improving accuracy with simultaneous fitting of water vapor, ice, and liquid

[Thompson et al., Remote Sensing of Environment 2015]
[Green et al., Water Resources Research 2006]

Three phases of water

[Thompson et al., Surveys in Geophysics 2018]

Yosemite National Park (HyspIRI Sierra Box)

Ivanpah field validation

[Thompson et al., *Surveys in Geophysics* 2018]

Spectral corrections improve atmosphere retrievals

[Thompson et al., Remote Sensing of Environment 2018]

Ongoing: *Optimal Estimation* for iterative fits of surface and atmosphere

[Thompson et al., Remote Sensing of Environment 2018]

Bayesian *Maximum a Posteriori* estimate using a combined model of surface, atmosphere, instrument

Improves atmospheric correction accuracy

Rigorous uncertainty accounting

Optimal weighting of information from instrument vs. domain knowledge

https://github.com/isofit/isofit

Example: volcano observations

AVIRIS-C f170127t01p00r16 (subset, visible bands)

Combined estimate of H₂O vapor, AOT, surface reflectance and temperature

Summary

Lambertian Reflectance (HDRF)

Radiance at sensor mW/nm/cm²/sr

Raw Digital Numbers

[Gao et al., 1993; Green et al., 1998, Thompson et al., 2015]

Thanks!

NASA Earth Science Division and the HyspIRI preparatory campaign

The AVIRIS-NG Team, including Sarah Lundeen, Brian D. Bue, Winston Olson-Duvall, John Chapman, and others

NASA Program NNH16ZDA001N-AVRSN, "Utilization of Airborne Visible/Infrared Imaging Spectrometer – Next Generation Data from an Airborne Campaign in India." Program manager Woody Turner

BACKUP

Stray SRF Measurement model

Adapted from [Zhong et al., 2006]

Measured Stray + Nominal + Measurement Radiance + Noise

Stray SRF Measurement model

Adapted from [Zhong et al., 2006

Stray SRF Measurement model

Adapted from [Zhong et al., 2006]

$$\mathbf{L}_{M} = [\mathbf{G} + \mathbf{I}] \mathbf{L}_{N} + \epsilon$$
 $\mathbf{L}_{M} = \mathbf{A} \mathbf{L}_{N} + \epsilon$

A Linear SRF Correction Matrix

Calculate a Moore-Penrose Pseudoinverse:

$$\mathbf{A}^{+} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}$$

This estimates the nominal SRF:

$$\widehat{\mathbf{L}}_N = \mathbf{A}^+ \mathbf{L}_M$$
Corrected Correction Distorted Radiance matrix Measurement

A similar correction fixes cross-track stray light

India Validation Results

- 26 of 37 flight days show significant improvements (p < 0.001)
- Typical improvement is 20-35%
- No flight day shows a statistically significant accuracy reduction

Agreement with laboratory data

Spatial dimension

- Exploit Near-Infrared (NIR) ocean reflectance
- Use a haze-free day to constrain path radiance and adjacency effects
- Use a wind-free day with nadir observations to limit glint
- Dark water should be highly absorbant in NIR
- Dataset: 2015 Greenland ice flow

david.r.thompson@jpl.nasa.gov

"Halo" reduction

Original RGB

612 nm, equalization stretch (0-3 uW nm⁻¹ sr⁻¹ cm⁻²)

612 nm, after CRF correction

Retrieve Stray SRF from a "Calibration Scene"

Death Valley Transect, 2014 (visible RGB)

Predict A band radiances using a Digital Elevation Model

Nonlinear least squares optimization finds SSRF parameters

Estimation accuracy for Gaussian SSRF (simulated)

Estimation accuracy for Lorentz SSRF (simulated)

Fit error for candidate SSRF shapes

Line shape	Error	α	SSRF parameters
Original Pareto	0.04482 0.004482 0.002059	n/a 0.0805 0.0664	n/a x: 0.154, y: 0.0515
Lorentz Voigt Gaussian	0.002039 0.001413 0.001413 best fit	0.0639 0.0639	x: 1.018, y: 3.912 σ: 5.477, <i>LHW</i> : 0 σ: 5.477

Improvement in O₂ A band fit

Flat field: σ < 0.14% across most elements

Radiometric calibration repeatability (hangar protocol)

Calibration coefficients: σ < 0.05% across most channels

