VSWIR L1 & L2: Radiance and Reflectance Algorithm Maturity, Calibration, and Validation

David R. Thompson1
Robert O. Green
Bo-Cai Gao2
Brian D. Bue
John Chapman
Michael L. Eastwood
Mark Helmlinger

Sven Geier
Yumi Iwashita
Sarah Lundeen
Ian McCubbin
Vincent Realmuto
Winston Olson Duvall

Jet Propulsion Laboratory,
California Institute of Technology
1david.r.thompson@jpl.nasa.gov
2Naval Research Laboratory

Source: Wikimedia commons

Copyright 2018 California Institute of Technology. All Rights Reserved.
US Government Support Acknowledged.
1. Instrument calibration: radiometric and spectral

2. Estimation of atmosphere and surface properties

3. Field validation methods and results
Typical Analysis Chain

Lambertian Reflectance (HDRF)

Radiance at sensor
mW/nm/cm²/sr

Raw Digital Numbers

[Gao et al., 1993; Green et al., 1998, Thompson et al., 2015]
Calibration Conventions

9/20/18

david.r.thompson@jpl.nasa.gov
1. **Electronic effects** - the time-dependent radiometric response of each detector

- Correct dark offset
- Correct pedestal shift
- Correct panel ghost
- Correct flat field
- Correct bad pixels
- Statistical destriping
Working backwards from the FPA

1. **Electronic effects** - the time-dependent radiometric response of each detector

 - Correct dark offset
 - Correct pedestal shift
 - Correct panel ghost
 - Correct flat field
 - Correct bad pixels
 - Statistical destriping
 - Correct crosstrack scatter
 - Correct spatial scatter

2. **Optical effects** - the spatial and spectral “view” of each detector
Working backwards from the FPA

1. **Electronic effects** - the time-dependent radiometric response of each detector
 - Correct dark offset
 - Correct pedestal shift
 - Correct panel ghost
 - Correct flat field
 - Correct bad pixels
 - Statistical destriping
 - Correct crosstrack scatter
 - Correct spatial scatter
 - Apply radiometric coefficients

2. **Optical effects** - the spatial and spectral “view” of each detector

3. **Calibration to the S.I.** (absolute spectroradiometry)
In-flight refinement of spectral calibration via atmospheric features

Feature positions provide accurate wavelength calibration

Depths and shapes provide refined information on spectral response function
In-flight refinement of spectral calibration via atmospheric features

Feature positions provide accurate wavelength calibration

Depths and shapes provide refined information on spectral response function
Empirical channel positions

[Thompson et al., Atmospheric Measurement Techniques 2015]
Empirical spectral response

Death Valley Transect, 2014 (visible RGB)
Empirical spectral response
[Thompson et al., Remote Sensing of Environment 2018]

Death Valley Transect, 2014 (visible RGB)
Empirical spectral response
[Thompson et al., Remote Sensing of Environment 2018]
Agenda

1. Instrument calibration: radiometric and spectral

2. Estimation of atmosphere and surface properties

3. Field validation methods and results
Atmospheric Correction

Rayleigh and molecular scattering

Gas and particle absorption

Surface reflectance
Atmospheric Correction

\[\rho_{TOA} = \rho_{atm} + \frac{T \rho_s}{1 - S \rho_s} \]

- Top of atmosphere measurement
- Path reflectance
- Transmission
- Surface reflectance
- Spherical albedo

Radiance Spectrum

Reflectance Spectrum
H$_2$O Vapor maps
[Thompson et al., Surveys in Geophysics 2018]

Central Valley Agriculture (HyspIRI Santa Barbara Box)
Improving accuracy with simultaneous fitting of water vapor, ice, and liquid

[Thompson et al., Remote Sensing of Environment 2015]
[Green et al., Water Resources Research 2006]
Improving accuracy with simultaneous fitting of water vapor, ice, and liquid

[Thompson et al., Remote Sensing of Environment 2015]
[Green et al., Water Resources Research 2006]
Three phases of water
[Thompson et al., *Surveys in Geophysics* 2018]

Yosemite National Park (HyspIRI Sierra Box)
Agenda

1. Instrument calibration: radiometric and spectral

2. Estimation of atmosphere and surface properties

3. Field validation methods and results
Ivanpah field validation

[Thompson et al., *Surveys in Geophysics* 2018]
Spectral corrections improve atmosphere retrievals
[Thompson et al., Remote Sensing of Environment 2018]
Ongoing: *Optimal Estimation* for iterative fits of surface and atmosphere

Bayesian *Maximum a Posteriori* estimate using a combined model of surface, atmosphere, instrument

Improves atmospheric correction accuracy

Rigorous uncertainty accounting

Optimal weighting of information from instrument vs. domain knowledge

https://github.com/isofit/isofit
Example:

volcano observations

AVIRIS-C f170127t01p00r16
(subset, visible bands)

Combined estimate of H$_2$O vapor, AOT,
surface reflectance and temperature

Aerosol Optical Depth at 550 nm

Hot crater

Aerosol Optical Depth Uncertainty
Radiance at sensor:
$mW/nm/cm^2/sr$

Lambertian Reflectance (HDRF)

Raw Digital Numbers

[Gao et al., 1993; Green et al., 1998, Thompson et al., 2015]
Thanks!

NASA Earth Science Division and the HyspIRI preparatory campaign

The AVIRIS-NG Team, including Sarah Lundeen, Brian D. Bue, Winston Olson-Duvall, John Chapman, and others

NASA Program NNH16ZDA001N-AVRSN, “Utilization of Airborne Visible/Infrared Imaging Spectrometer – Next Generation Data from an Airborne Campaign in India.” Program manager Woody Turner
Stray SRF Measurement model
Adapted from [Zhong et al., 2006]

\[
\text{Measured Radiance} = \text{Stray Radiance} + \text{Nominal Radiance} + \text{Measurement Noise}
\]
Stray SRF Measurement model
Adapted from [Zhong et al., 2006]

\[
L_M = GHL_A + HLA + \epsilon
\]
Stray SRF Measurement model
Adapted from [Zhong et al., 2006]

\[
L_M = \begin{bmatrix} G + I \end{bmatrix} L_N + \epsilon
\]

\[
L_M = A L_N + \epsilon
\]
A Linear SRF Correction Matrix

Calculate a Moore-Penrose Pseudoinverse:

\[A^+ = (A^T A)^{-1} A^T \]

This estimates the nominal SRF:

\[\hat{L}_N = A^+ L_M \]

A similar correction fixes cross-track stray light
India Validation Results

- 26 of 37 flight days show significant improvements ($p < 0.001$)
- Typical improvement is 20-35%
- No flight day shows a statistically significant accuracy reduction

Fractional improvement for 277 scenes
Agreement with laboratory data

9/20/18

david.r.thompson@jpl.nasa.gov
Spatial dimension

- Exploit Near-Infrared (NIR) ocean reflectance
- Use a haze-free day to constrain path radiance and adjacency effects
- Use a wind-free day with nadir observations to limit glint
- Dark water should be highly absorbant in NIR
- Dataset: 2015 Greenland ice flow
“Halo” reduction

Original RGB

612 nm, equalization stretch (0-3 μW nm⁻¹ sr⁻¹ cm⁻²)

612 nm, after CRF correction
Retrieve Stray SRF from a “Calibration Scene”

Death Valley Transect, 2014 (visible RGB)

Predict A band radiances using a Digital Elevation Model

Nonlinear least squares optimization finds SSRF parameters
Estimation accuracy for Gaussian SSRF (simulated)
Estimation accuracy for Lorentz SSRF (simulated)

\[\alpha \text{ (Stray light fraction)} \]

\[\begin{align*}
\text{Lorentz half width} & \quad \text{SNR 400} \\
4.71 & \quad 8.2425 \\
5.8875 & \quad 7.065 \\
8.2425 & \quad 5.8875
\end{align*} \]
Fit error for candidate SSRF shapes

<table>
<thead>
<tr>
<th>Line shape</th>
<th>Error</th>
<th>α</th>
<th>SSRF parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0.04482</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Pareto</td>
<td>0.004482</td>
<td>0.0805</td>
<td>x: 0.154, y: 0.0515</td>
</tr>
<tr>
<td>Lorentz</td>
<td>0.002059</td>
<td>0.0664</td>
<td>x: 1.018, y: 3.912</td>
</tr>
<tr>
<td>Voigt</td>
<td>0.001413</td>
<td>0.0639</td>
<td>σ: 5.477, LHW: 0</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.001413</td>
<td>0.0639</td>
<td>σ: 5.477</td>
</tr>
</tbody>
</table>
Improvement in O₂ A band fit

![Graph showing improvement in O₂ A band fit]
Radiometric calibration repeatability (hangar protocol)

Flat field: $\sigma < 0.14\%$ across most elements

Calibration coefficients: $\sigma < 0.05\%$ across most channels