

Contents

- Science Summary
- Mission Concept Lineage
- 2018 HyspIRI Baseline Concept Overview
- SmallSat Free Fliers
 - TIR SmallSat Free-Flier
 - VSWIR SmallSat Free-Flier
- Conclusion

HyspIRI Science Summary

HyspIRI Science

Climate:

Ecosystem biochemistry, condition & feedback;
 spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration

Ecosystems:

 Global biodiversity, plant functional types, physiological condition, and biochemistry including agricultural lands

• Fires:

• Fuel status; fire frequency, severity, emissions, and patterns of recovery *globally*

Coral reef and coastal habitats:

• Global composition and status

Volcanoes:

• Eruptions, emissions, regional and *global* impacts

Geology and resources:

 Global distributions of surface mineral resources and improved understanding of geology and related hazards

Applications:

• Disasters, EcoForecasting, Health/AQ, Water

ECOSTRESS & Preparatory airborne campaigns have been advancing and refining science, applications, algorithms, and processing

Mission Concept Lineage

- Level 1 Measurement Requirements
 - Vetted by community at workshops and in literature (many refereed journal articles)
- Implementation options:

Original HyspIRI Baseline (2012)

VSWIR 60 m / 19 day
TIR 60 m / 5 day
3-5 years

SmallSat Free-Fliers (2015)

VSWIR 30 m / 16 day
TIR 60 m / 4 day
2 years

Updated HyspIRI Baseline (2016-2018)

VSWIR 30 m / 16 day
TIR 50 m / near 4 day
3-5 years

UPDATED SmallSat Free-Fliers (2018)

VSWIR 30 m / 16 day + Pointing 2 years TIR 50 m / 4 day

4 years

2018 HyspIRI Baseline Contemporaneous Concept Overview

- Based on updated 2016-2018 Mission Concept Goal
 - Update the HyspIRI mission concept baseline to use the latest developments in instrument, spacecraft and ground systems.
 - Use only existing technology
 - CWIS has brought the latest VSWIR to >= TRL 6
 - PHyTIR, ECOSTRESS have brought latest TIR to >= TRL 6-9
 - IPM based on Space cube 2.0 >= TRL 6
 - Flight system, Ground System and Science Data System all use existing technology

Dyson (CWIS)

PHyTIR

Orbit and Coverage

504 km Sun Synchronous Orbit (10:30 AM LMTDN)

 16 day global coverage for VSWIR

- 4 day near-global coverage for TIR
 - Full coverage in 5 days

HyspIRI Payload

VSWIR

- 2x CWIS Dyson spectrometers
- 185 km swath
- 30 m resolution

TIR

- PhyTIR Demo on ECOSTRESS
- 518 km swath
- 50 m resolution

IPM

- Four Card Flight Unit
- 5 x 7 x 9 inches

Spacecraft Payload Capability

- Solutions from multiple vendors can accommodate payload (CBE):
 - 200 kg
 - 290 W
 - 450 Gb / orbit
 - 400 GB onboard storage (7 nominal orbits worth of storage)
 - Pointing (3 sigma):
 - 36 arcsec knowledge
 - 6 arcsec/frame stability
 - 0.25 deg control

Telecom, MOS/GDS, Onboard/Ground Processing

Telecom Link

- 1 Gbps Ka-Band single polarization link using QPSK modulation
- Uses Ka Modulator (KAM) and Solid State Power Amplifier (SSPA) developed for NISAR Program (Launch in 2020)
- 2 axis gimbal to maximize downlink time per orbit

MOS/GDS

- HyspIRI preparatory campaign data system experience
- Uses ground stations operated by KSAT through the NEN in Svalbard and Antarctica
 - Ka-band already in use at those locations

Onboard Processing

- 4:1 Fast lossless compression (Klimesh, Kiely, Yeh)
- Cloud screening using 0.45 and 1.25 μm channels (Thompson et al.)

Ground processing

HyspIRI airborne preparatory campaign pipeline demonstrated

SmallSat Free-Fliers

TIR SmallSat Free-Flier

- All-reflective, compact telescope, Scanning mirror
 - 13.3um HgCdTe, PHyTIR/ECOSTRESS ROIC
 - 8 Thermal bands
 - FPA capability proven in ECOSTRESS ISS instrument
- Instrument is integrated with a commercial bus launched into a 503 km orbit
 - 4 day revisit
 - 50m Nadir Resolution

TIR Instrument Configuration

- Optics and Detector
 - All-reflective, compact telescope, Scanning mirror, 13.3um HgCdTe, PHyTIR/ECOSTRESS ROIC
- Electronics
 - Instrument electronics modeled after OCO-3 + ECOSTRESS
- Thermal
 - NGAS high efficiency cryocooler and electronics
 - Passive radiator to cool FPA housing
 - Larger radiator to reject cryocooler and instrument electronics heat
 - Ops heaters, survival heaters, PRTs
- Mass:
 - 102 kg w/ contingency
- Power:
 - 184 Watts w/ contingency
- Data Rate
 - ~55 Mbps orbit average data rate
 - ~0.546 Tb data volume worst-case per orbit

TIR SmallSat Free-Flier

- Observational Scenarios
 - Day and night land and coastal regions at 50 m resolution
 - Oceans at 1 km resolution
 - Sun-synchronous (descending), overpass time 11:00 +/-30min
- Ground Network
 - 7.3m S/X/Ka-band KSAT stations at Svalbard and Trollsat
 - Lossless compressed data can be downlinked with two 7-minute passes per orbit
 - This uses a solution that is a subset of the NISAR implementation
- FPA designed specifically for HySpIRI TIR instrument
- FPA performance/capability demonstrated by ECOSTRESS instrument
- Software heritage from ECOSTRESS
 - Use of standard interface (cPCI, RS-422)
 - Reduced bandwidth on the processor and bus
 - Compression algorithm in firmware

VSWIR SmallSat Free-Flier

- Two F/1.8 Compact Dyson-VSWIR Imaging Spectrometer (380 to 2510 nm)
 - CWIS like design
 - Two CHROMA-D ROIC 3K x 512 pixels; 18 um pixels
- Instrument is integrated with a commercial bus launched into a 429 km SSO
 - Pegasus XL with a 16-day revisit
 - 185 km with 30 m sampling

VSWIR Instrument Configuration

- Instrument configuration includes:
 - Telescope assembly
 - 2 Dyson spectrometers
 - Single cryocooler and electronics
 - Thermal heaters/sensors
 - Passive radiator
 - IPM and instrument electronics
- Mass: 129 kg with contingency
- Power: 117 W
- Data Rate
 - 1 Gbps peak SSR write from C&DH unit (IPM read/write TBD)
 - ~375 Gbit/sec orbital average data accumulation rate

VSWIR SmallSat Free-Flier

 Ability to select specific revisit targets (e.g. estuaries, lakes) and targets of opportunity (e.g. active volcanoes and forest fires)

© 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.

VSWIR SmallSat Free-Flier

- Onboard Processing
 - 4:1 Fast lossless compression (Klimesh, Kiely, Yeh)
 - Cloud screening using 0.45 and 1.25 μm channels (Thompson et al.)
 - C&DH passes data from SSR to IPM for processing; writes L2 science data products from IPM back to SSR
 - S/C downlinks SSR-stored data to ground station
- Ground processing
 - HyspIRI airborne preparatory campaign pipeline demonstrated
- The subsystem design, accommodation, interface, heritage, and technology readiness are adequate:
 - CHROMA-D ROIC is based on the heritage designs from 6604A / CHROMA ROICs
 - Electronics design based on EVI-4 selected EMIT
 - Flight Performance Heritage from ARTEMIS / M3 (among others)

CHROMA-D - 2017

HgCdTe grown in 3072x512 format

Existing 3072x512 ROICs have been probe-tested

© 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.

Conclusion

- 2018 HyspIRI Mission Concepts:
 - Contemporaneous
 - VSWIR: 16 day / 30 m
 - TIR: near 4 day / 50 m
 - Separate but contemporaneous Free-Fliers
 - VSWIR 30 m / 16 day + Pointing
 - TIR 50 m / 4 day
- Enabled by:
 - Existing technologies
 - Onboard data compression and cloud screening
 - Proven Ka-Band link to ground
- Builds upon:
 - ECOSTRESS EV-I selected instrument on ISS
 - CWIS Spectrometer development
 - Detector development
 - EVI-4 selected EMIT (ISS)
 - HyspIRI Airborne Preparatory Campaign

(CWIS)

ECOSTRESS