From 2007 to 2018, Here We Are

- Congratulations
- Thank You!
Our Evolving HyspIRI Approach – Where We Landed

Key Global Science and Applications Research

Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration

Ecosystems: Global biodiversity, plant functional types, physiological condition, and biochemistry including agricultural lands

Fires: Fuel status; fire frequency, severity, emissions, and patterns of recovery globally

Coral reef and coastal habitats: Global composition and status

Volcanoes: Eruptions, emissions, regional and global impacts

Geology and resources: Global distributions of surface mineral resources and improved understanding of geology and related hazards

Applications: Disasters, EcoForecasting, Health/AQ, Water

Global Mission Urgency

The HyspIRI science and applications objectives are critical today and uniquely addressed by the combined imaging spectroscopy, thermal infrared measurements, and IPM direct broadcast.

Measurement

Imaging Spectrometer (VSWIR)
- 380 to 2510nm in ≤10nm bands
- 30 m spatial sampling
- 16 days revisit
- Global land and shallow water

Thermal Infrared (TIR)
- 8 bands between 4-12 µm
- 60 m spatial sampling
- 5 days revisit; day/night
- Global land and shallow water

IPM-Low Latency data subsets

Mission Concept Status

Level 1 Measurement Requirements: Vetted by community at workshops and in literature (many refereed journal articles)

Payload: VSWIR Imaging Spectrometer, TIR Multi-spectral Radiometer, and Intelligent Payload Module (IPM)

Original 60 m option: Mature

ISS options: VSWIR & TIR Mature, ECOSTRESS EVI selected

Separate Smallsat Mission option: VSWIR and TIR solutions developed with TEAM I/X

2016 Option: HyspIRI VSWIR evolved to 30 m and 16-day global revisit. Requires F/1.8 Dyson spectrometer architecture and other current technologies.

Preparatory Airborne Campaigns: Measurements used to advance and refine science, applications, algorithms, and processing

Current Decadal Survey: >25 HyspIRI-related Dec. Sur. RFIs
TABLE S.2 Observing System Priorities

<table>
<thead>
<tr>
<th>Targeted Observable</th>
<th>Science/Applications Summary</th>
<th>Candidate Measurement Approach</th>
<th>Designated</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosols</td>
<td>Aerosol properties, aerosol vertical profiles, and cloud properties to understand their effects on climate and air quality</td>
<td>Backscatter lidar and multi-channel/multi-angle/polarization imaging radiometer flown together on the same platform</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clouds, Convection, and Precipitation</td>
<td>Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes including cloud feedback</td>
<td>Radar(s), with multi-frequency passive microwave and sub-mm radiometer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mass Change</td>
<td>Large-scale Earth dynamics measured by the changing mass distribution within and between the Earth’s atmosphere, oceans, ground water, and ice sheets</td>
<td>Spacecraft ranging measurement of gravity anomaly</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Surface Biology and Geology</td>
<td>Earth surface geology and biology, ground/water temperature, snow reflectivity, active geologic processes, vegetation traits and algal biomass</td>
<td>Hyperspectral imagery in the visible and shortwave infrared, multi- or hyperspectral imagery in the thermal IR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Surface Deformation and Change</td>
<td>Earth surface dynamics from earthquakes and landslides to ice sheets and permafrost</td>
<td>Interferometric Synthetic Aperture Radar (InSAR) with ionospheric correction</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
SBG: Where We Go From Here

- ESD will direct responsibility for the designated observables (DOs) to the NASA centers
- Instruments and spacecraft will be provided by partners or competed
- ESD requested multi-center plans for each DO to perform broad trade-space studies to meet research and applications objectives
- 4 Multi-Center plans for DO studies submitted July 16
- Included SBG plan from 5 Centers (JPL, GSFC, ARC, LARC, MSFC)
SBG: Where We Go From Here

- HQ ESD 3-week evaluation
- Study Coordinator JPL/Jamie Nastal integrating responses
- Series of Center and Center-HQ calls to discuss and iterate points in evaluation
- Revised SBG study plan → statement of work to initiate study
- Plan includes broad engagement of academic, interagency, international, and other potential stakeholders and end users
- This workshop is your first opportunity to contribute ideas as the SBG study kicks off
Next Three Days

Day 1 - HysplIRI: Our Foundation

Days 2 and 3 - SBG: Looking Ahead
A SATM Framework for This Workshop

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What areas within an urban region are most impacted or vulnerable to heat stress?</td>
<td>AS-I. Determine areas with highest rates of intensity of heat stress / urban heat island for XXXX dates.</td>
<td>Public Health County Water and Power Utilities</td>
<td>X weather stations in ABC County. Historical daily weather station data, minimal geospatial datasets. ?</td>
<td>Optimally, LST with uncertainty XYZ, with spatial ABC resolution and DEF temporal resolution for GHI years.</td>
<td>Optimally, LST with uncertainty XYZ, with spatial ABC resolution and DEF temporal resolution for GHI years.</td>
<td>pixel size, swath width, wavelength range, dynamic range, NEDT at sensor</td>
<td>Need to have coverage of LA County Region. -- LAC Region is in the XYZ orbit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AS-II Determine differences in heat stress as determined by HI vs HVI</td>
<td>Public Health County Water and Power Utilities</td>
<td>X weather stations in ABC County. Historical daily weather station data, minimal geospatial datasets. ?</td>
<td>Spatial Resolution, Temporal Resolution, Spatial Coverage, Uncertainty</td>
<td>Spatial Resolution, Temporal Resolution, Spatial Coverage, Uncertainty</td>
<td></td>
<td>Heat wave info is determined daily by X weather stations. XYZ instrument will fill spatial gaps on days data are available.</td>
<td></td>
<td>W-2, W-3</td>
</tr>
<tr>
<td></td>
<td>AS-III. Determine urban heat island and vulnerability climatology data over 15 years to inform long term planning metrics to mitigate impacts of heat stress</td>
<td>City or County Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank You