
An	investigation	on	spectral	noise	in	the	Hyperspectral	Thermal	Emission	Spectrometer	(HyTES)
Kerry	Cawse-Nicholson

Jet	Propulsion	Laboratory,	California	Institute	of	Technology.

Data

• HyTES is a long wave spectrometer covering the range 7.5 – 12 um.
• Lakes are ideal sites for noise estimation, as they are large and homogeneous
• JPL has established aquatic validation sites at Lake Tahoe, CA/NV and Salton Sea CA.
• Lake Tahoe CA/NV is at a high elevation (small atmospheric correction), whereas Salton Sea is at a low

elevation (large atmospheric correction).
• HyTES data was acquired over Salton Sea on 2013/04/29, 2014/07/06, and 2015/02/15, and over Lake Tahoe

on 2013/04/25 and 2014/07/12.
• In each case, a subset (512 x 512 pixels) of the image was used, encompassing water only (see Figure 1).
• For further testing, a non-water scene was acquired in Cuprite, Nevada, on 2015/05/03. This is a well

characterized site for mineral mapping, due to its heterogeneity and unchanging landscape.

Noise	estimation

The objective of this study was to characterize the spectral noise in HyTES. In this case, “noise” refers to all
deviations from the desired observable, in this case the surface radiance, and includes contributions from
instrument noise, errors introduced by calibration and atmospheric correction, and any offset occurring as a
result of non-linear spectral interactions. The full understanding of the scene-specific noise is vital for almost all
higher-level processing, including temperature/emissivity separation, target gas detection, image whitening,
the estimation of the intrinsic dimension of the image, spectral unmixing, image compression, target detection,
and many other applications.
• Meer’s Spatially Based noise estimation method, uses the spatial information in the image to approximate

the noise. For each band, the image is divided into non-overlapping spatial blocks and the variance is
calculated per block, for a pyramid of block sizes. Given that five of the test images contain water only, this
method is particularly well suited to our test datasets.

• Multiple regression theory expresses each band in terms of all other bands. The error in this regression is
used to approximate the noise per pixel in the band. This method is computationally complex; however, it
accounts for spatially variable or substance-dependent noise.

ApplicationsCorrelated	noise

To illustrate the utility of accurate noise estimation, we present an adaptive noise filtering technique, which
takes the noise variance as input. The Savitzky-Golay filter uses a moving window to fit polynomials of order
n, to each pixel subset (window). Each pixel is initially smoothed with a polynomial order of 3, and a window
size of 11 bands (MATLAB default values). When comparing the original pixel to the smoothed spectrum,
those channels that differ by more than twice the standard deviation of the noise are recomputed using
iteratively smaller window sizes and polynomial orders. This ensures that the correction never exceeds the
noise levels. Figure 3 shows the correction of a mineral spectrum taken from the Cuprite scene. The small
features have been preserved, but the spurious noise has been smoothed.

Discussion

Figure	1:	A	flightline of	HyTES	data	acquired	over	Salton	Sea	in	2015.

• Statistical noise estimations significantly underestimate noise when the noise is spectrally correlated.
• Spatial methods such as Meer’s determine the noise variance band by band, but they do not capture the

off-diagonal elements of the noise covariance matrix, which are needed for noise whitening.
• However, those methods that determine the correlations of noise are also adversely affected by correlated

noise, creating a circular problem.
• Figure 3 shows that there is a high level of correlation in the range 9.5075 – 9.8251 µm. This region

represents the overlap between the two detector bands within HyTES.
• Figure 4 shows that when alternate bands are removed, the statistical noise estimation appears to be

continuous, when compared to the noise estimate from the original image, which shows step
discontinuities when the bands become correlated.

• We propose a new method to estimate the full noise covariance matrix in cases of correlated noise as
follows:

1. Split the bands into uncorrelated sets. For instance, in the datasets evaluated here, bands 1,3,…,201 are
uncorrelated with 2,4,…,202.

2. Build up the uncorrelated sets so that all off-center noise covariance elements are covered. For instance,
in the two separate sets listed above, it is impossible to know the noise covariance between bands 1 and 2
(etc.). In this case, it was possible to build a complete set using six band combinations.

3. Calculate the noise covariance matrix of each band subset listed above. Where multiple values are
available for a particular band combination, the largest value is chosen, since correlation reduces the
noise estimate, as seen in Figure 4.

Once the noise covariance has been accurately estimated, it can be used in many applications, including
temperature/emissivity separation, target gas detection, noise whitening, target detection, the estimation of
intrinsic dimensionality, etc.

Figure	5:	An	illustration	of	an	adaptive	spectral	smoothing	technique,	using	the	estimated	noise	
covariance	to	ensure	that	signal	features	are	not	removed.	

• The	estimation	of	the	noise	covariance	matrix	is	necessary	for	many	image	processing	applications.	
• For	example,	in	the	determination	of	intrinsic	dimensionality	(ID),	the	noise	covariance	is	necessary	to	

separate	the	signal	subspace	from	the	noise	subspace,	and	similarly,	in	image	unmixing,	and	in	the	
detection	of	small	targets,	the	noise	covariance	is	needed	in	order	to	separate	the	target	from	the	
background.	

• However,	the	estimation	of	the	noise	covariance	matrix	is	difficult,	particularly	in	the	case	of	correlated	
noise.	

• In	this	project,	we	present	the	results	of	standard	noise	estimation	algorithms,	applied	to	images	acquired	
by	the	airborne	Hyperspectral	Thermal	Emission	Spectrometer	(HyTES),	and	modify	them	as	needed	to	
obtain	an	accurate	estimation	of	the	noise	covariance	matrix.	

• Additionally,	several	applications	are	illustrated,	including	dimensionality	estimation	and	noise	removal.	
• This	technique	will	benefit	the	current	HyTES	data	products	by	reducing	noise	in	retrieval	of	spectral	

emissivity,	reduce	uncertainties	in	temperature	estimation,	and	improve	the	sensitivity	of	trace	gas	
detection	(e.g.	methane,	ammonia).	

• In	addition,	it	will	provide	a	framework	for	analyzing	noise	variances	and	correlations	in	future	airborne	
and	spaceborne hyperspectral	missions.
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Figure	2:	Noise	variance	per	band	as	estimated	by	Meer’s	method	for	Lake	Tahoe	(LT)	and	Salton	Sea	(SS).	The	noise	
increases	at	the	beginning	and	end	of	the	spectrum,	which	is	typical	of	many	sensors.	Here	the	noise	increase	is	

also	due	to	large	water	absorption	lines	from	7.4-8.2	µm	and	low	signal	at	wavelengths	above	11.5	µm.	

Figure	3:	The	band	centered	at	9.6839	µm	has	a	very	high	positive	correlation	with	the	9	bands	
preceding	it,	and	a	very	high	negative	correlation	with	the	8	bands	following	it.

Figure	3:	Statistical	noise	estimations	show	a	step	where	bands	become	correlated.	Removing	
correlation	creates	a	smoother	noise	estimation.	

The correct estimation of noise is vital when determining the intrinsic dimensionality (ID) of a dataset. Using
Random Matrix Theory (RMT), the original ID estimate for Cuprite is 178, which is much higher than
anticipated for the area. RMT is known to be sensitive to correlated and underestimated noise, but the
dimensionality overestimation is not unique to RMT – HySime returns an ID of 163. Using the corrected noise
covariance matrix derived above, the RMT ID is determined to be 9.

Figure	6:	Unmixing	the	Cuprite	scene	using	NFINDR	with	9	endmembers,	and	non-negative	least	
squares	to	determine	abundances.	


