

J. Antonio Guzmán Q. and Arturo Sánchez-Azofeifa

Alberta Centre for Earth Observation Sciences (CEOS) guzmnque@ualberta.ca

Liana abundance

- Since 2002, different studies have shown an increase in liana abundance.
- Detrimental effects on the ecosystems.
- These trends have cast doubt the accuracy of some productivity models.
- Detection!

http://climatenewsnetwork.net

The importance of including lianas in global vegetation models

Classification of lianas and trees

 Several studies have addressed the classification at different levels

 Visible, near and shortwave infrared as regions of interest

Long-wave infrared region?

Foster et al. 2008
Castro-Esau et al. 2004
Sánchez-Azofeifa and Castro-Esau 2006
Kalacska et al. 2007
Sánchez-Azofeifa et al. 2009
Hesketh and Sánchez-Azofeifa 2012
Martin et al. 2016

Micrometers (µm)

Objectives

- To determine which spectral region could improve the discrimination of lianas and trees leaves. (VIS-NIR or LWIR)
- To evaluate which pre-processing approach may enhance the discrimination.
- To evaluate, in combination to data reduction techniques, which classifiers are the most promising to discriminate liana and tree leaves.

Study site and design

- Santa Rosa National Park, Costa Rica
- May-July, 2017
- Full sun exposed leaves
- 5 leaves per individual / 4 individuals = 20 leaves per species

Santa Rosa Tropical Dry Forest

Species selected

Trees			Lianas	
Family	Species	Family	Species	
Apocynaceae	Stemmadenia obovata	Apocynaceae	Forsteronia sp.	
Bignoniaceae	Crescentia alata		Forsteronia spicata	
Burseraceae	Bursera simarouba	Bignoniaceae	Arrabidaea chica	
Dilleniaceae	Curatella americana		Cydista aequinoctialis	
Euphorbiaceae	Jatropha curcas		Cydista diversifolia	
	Sapium glandulosum		Paulinia sp.	
Fabaceae/Caes	Bauhinia ungulata	Cucurbitaceae	Cayaponia racemosa	
	Hymenaea courbaril	Dilleniaceae	Tetracera volubilis	
Fabaceae/Pap	Gliricidia sepium	Malpighiaceae	Heteropterys panamensis	
Fagaceae	Quercus oleoides		Heteropterys sp.	
Hippocrateaceae	Semialarium mexicanum		Hiraea reclinata	
Lauraceae	Ocotea veraguensis	Rhamnaceae	Gouania polygama	
Malpighiaceae	Byrsonima crassifolia	Sapindaceae	Serjania atrolineata	
Malvaceae	Guazuma ulmifolia		Serjania schiedeana	
Meliaceae	Cedrela odorata			
	Trichilia americana	<pre>14 species of lianas / 7</pre>		
Nyctaginaceae	Pisonia aculeata	families		
Sapindaceae	Cochlospermum vitifolium			
Simaroubaceae	Simarouba glauca	(21 species of trees / 17		
Tiliaceae	Luehea speciosa	fa	milies	
Verbenaceae	Rehdera trinervis			

Data collection: spectral reflectance

Unispec-SC

- Leaf clip and light source
- Range 0.31-1.13 μm (0.45-0.95 μm)
- Resolution 3.3 nm (1 nm resample)

Agilent 4100 ExoScan FTIR

- FTIR (Fourier transform infrared) spectrometer
- Range 2.5-16 μm (8-11 μm)
- Resolution 1.86 cm⁻¹ (10 nm resample)

Data processing

Preprocessing

Data processing

Eigenvectors

Principal components analysis

Classifiers

Data from: http://topepo.github.io/caret

Classifiers

Conclusions

Random forest, *k*-nearest neighbor, SVMRK seems to be the best classifiers to discriminate lianas and trees at the leaf level

3

LWIR region present the highest values of classification

2

First derived and CWT seems to be better procedures for classification

Spectral bands of importance for classification

• VIS-NIR: 680-720 nm

LWIR: several

Future directions - New perspectives

Forest mapping?

Functional traits - spectroscopy

Acknowledgments

Santa Rosa National Park

Tropi-Dry

Inter-American Institute for Global Change Research (IAI)

