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River runoff is increasing | ¢ !Moreenergy ,
— More evaporation

. Atmosphere can't hold all that evaporation
— More precipitation

. BUT, in places where there's already
precipitation

e Atmospheric moisture rains out before
it reaches semi-arid places

° More intense storms; more intense
droughts
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— Wet get wetter,
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Average ET (1 986- 1995) Vs B10d1ver81ty for the Southem Hemlsphere

Kim, S., Kucera, L., Fisher, J.B., Lee, C.M., French, A., in prep. Linking natural
and managed ecosystems through plant water dynamlcs.
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a) 2013 anomalies:
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Landsat NDVI : ¢ |MODIS NDVI s N Landsat ET
b) 2014 anomalies:

Landsat NDVI  ° =S Landsat ET
c) 2015 anomalies:

Landsat NDVI | |MODIS NDVI ¢ Landsat ET

-0.5 0 0.5 -15 0
Cavanaugh, K., Fisher, J.B., Lee, C., Perret, J., Kim, S., Comer, D., in prep. Analyzing Advantages of
ECOSTRESS as a Tool for Drought Detection and Water Management Practices.
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ence fostered by increased spatial and temporal resolution, as well as accuracy. As a product of the NRC
Decadal Survey process, we identified and synthesized the principal outstanding knowledge gaps into ten
research and applied science questions:

1.
2.
3.

10.

How are natural and managed ecosystems responding to changes in climate and water availability?
How much water do different plant assemblages in ecosystems use and how much do they need?
What is the timing of water use among ecosystems, and how does that vary diurnally, seasonally, and
annually?

How do changes in plant water availability, access, use, and stress regulate photosynthesis and
productivity?

How is ET partitioned into transpiration, soil evaporation, and interception evaporation, and how are
these components differentially impacted by a changing temperature, CO,, and hydrologic regime?
How does ET redistribute water in a strengthening or weakening global hydrological cycle, and what
are the underlying causes and consequences?

How do changes in ET amplify or dampen climate feedbacks, land-atmosphere coupling, and hydrome-
teorological extremes at local to regional scales?

Can ET observations help constrain and improve short-term weather prediction and future climate pro-
jections at seasonal to interannual timescales?

Can we unify the water, carbon, and energy cycles globally from space-borne observations, with ET as
the linking variable?

How can information on ET be applied to optimize sustainable water allocations, agricultural water use,
food production, ecosystem management, and hence water and food security in a changing climate to
meet the demands of a growing population?







Hrgh accuracy The h|gher the accuracy, the
greater the ability to differentiate water use and
water stress among different crops, species, anc
ecosystems, as well as to enable more efficient

water management (<1 O% relatlve error)
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High spatial resolution: The length scales
required to detect spatially heterogeneous

responses to water environments must consider
the “field-scale” of agricultural plots, narrow

riparian zones, and mixed-species forest/

ecosystem assemblages (<100 m).
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Water Stress Drives Plant Behavior

m— [\easured (FLUXNET)
Landsat

S FR SSAWRLEN €
High temporal resolution: ET is highly variable
from day to day, thus management necessitates
accurate ET information provided in sync with
daily irrigation schedules; ET also varies
throughout the day, and, under water stress,
vegetation may shut down transpiration by
closing leaf stomata pores, impacting both
water management as well as atmospheric

teedbacks (daily, diurnal).
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Large spatial coverage: Global coverage
enables detection of large-scale droughts, is
necessary to understand climate feedbacks, is
required to close the global water and energy
budgets, and ensures consistency and
dependability in measurements across regions

and shared resources (global land).

0 0.005
Uncertainty in WUE (GPP/ET; 1901-2009)




Long-term monitoring: Because heatwaves,
droughts and drought responses evolve over
the course of multiple years, and as climate
becomes increasingly variable, the need for
long-term observations will likewise be
increasingly critical (decadal scale).
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Evapotranspiration Error (%)

[global: PT-JPL]

| 1 Net Radiation

B Air Temperature

- Bl \Water Vapor Pressure
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| | | |
0 10 20 30 40 50

Driving Variable Error (abs %)



National Aeronautics and Space Administration ‘E< O S | R E E S

ECOsystem Spaceborne Thermal
Radiometer Experiment
on Space Station

An Earth Venture Instrument-2 Proposal
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Find ancillary data
D e product files for time
S e&, and location
eolocationy- o
g -
data: &
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Download ancillary data

Pre-process (quality
control, scale, offset)

Reproject onto
ECOSTRESS scene



GOECOSTRESS cal/val
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PT-JPL: 30 m (MODIS/Landsat)
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xicali: 23 March 2017
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Quality Flags

As part of preprocessing pipeline:
Collect quality flags from all input ancillary files; Loop over 23 ancillary datasets

Place in pixel-based concatenated QualityFlag From downloaded ancillary
data field in output HDF5 file; data, get quality field

Retain original conventions for quality flag usage
and meaning from ancillary data sources; Resample onto ECOSTRESS
scene, using Nearest Neighbor

Original quality flags can have different lengths;
padded to uniform length in concatenated file
(ensure compatibility with secondary data Re-open cumulative QualityFlag

sources). file per ECOSTRESS scene,
concatenate new flag on pixel
level, with padding if needed

L3 PT-JPL ET, QualityFlag added to
L4 ESI, L4 WUE L3 PT-JPL ET, L4 ESI, L4
output from Science code WUE output HDFS5 files



I“\

’ L

‘ AN\ N\ N\ N\
v 24

\\\\

VoL

Diurnal Testing

130

£ =098 § /
R2 =0.97 P
RMSE = 6.65W/m2 /"

i\ﬂ,: Air i% Dew-Point
Temperature @ 848 Temperature

diurnal

PT-JPL -

@ Incoming Incoming processing E
¢ ‘Shortwave . Longwave 3
""" Radiation = Radiation > 70
2
150 FLUXNET Sites S
| 3
o
s
30
1074%70% 70% 70%.93% . .
............................ ) ot }O My
? 2 2 2 3 77 2 2
-10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

——PT-JPL «eeeeeeee FLUXNET

PT-JPL ET using MODIS and MERRA2 compared to La Thuile FLUXNET
aggregated by hour at all sites with absolute and percentage bias

¢ f f fF L L L L L L L L L L L L F



ECOSTRESNS:

A technology that will help us
understand how plants react to

our changing planet
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ET Spaceborne Measurements Requirements

Return Cycle < 16 5 3-5
(days)

Number of 2 3 8 5

TIR bands
Spatial 120 100 1000 60 38x57

resolution (m)

Coverage UsS World UsS World World World
always on always on always on always on always on always on*

Source: Letter to Anne Castle on “Water Resources Needs” dated November 22, 2011, R.
Allen, U. Idaho, referencing Allen 2010, Allen et al 2011.
" Proposed mission >2023.
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The Future of Evapotranspiration

ET science and applications have significantly advanced
across a wide array of fields over the past few decades;
Critical outstanding ET-based science and application
qguestions remain from local to global scales due to
deficiencies in our observational capabilities;

National and international public policies need to

prioritize ET-focused investments and proirams.



