

Ecosystem Structure, Composition, and Function: Ecological Responses to Environmental Perturbations in Mammoth Mountain, California

Kerry Cawse-Nicholson, Joshua Fisher*, Caroline Famiglietti, Florian Schwandner, Ryan Pavlick, David Schimel, Amy Braverman, Robert Bogue, Jennifer Lewicki (USGS), and David Pieri

* Corresponding author

California Institute of Technology. Government sponsorship acknowledged

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

15 JANUARY 2014

FRIEDLINGSTEIN ET AL.

Two primary sources of uncertainty:

1) Climate (γ -response); versus, 2) CO₂ fertilization (β -response).

By far the largest sensitivity is in the β -response, with projected differences due to CO₂ fertilization in net carbon uptake up to 145% [*Piao et al.*, 2013; *Smith et al.*, 2016].

Plants and Elevated CO₂

- Tree responses to high CO₂ have been extensively studied in field experiments (Norby et al., 1999)
- Optimum-growth phase followed by a water-stressed phase eventually severe enough to cause death
- Threshold CO₂ concentration?

PHYSIOLOGICAL FUNCTION

TRAIT COMPOSITION

PHYSICAL STRUCTURE

Science questions

- How do plants respond to rising CO_2 , in terms of ecosystem structure, composition, and function?
 - *Structure*: Does biomass increase with elevated CO_2 ?
 - Composition: Do canopy trait shifts occur in changing CO_2 environments?
 - Function: Does photosynthetic efficiency increase with increasing CO_2 ?

ECOLOGY

VOLCANOLOGY

Mammoth Mountain, CA

- A 1989 earthquake swarm and associated geologic deformation have drastically altered gas discharge at the land surface
- Magmatically CO_2 escapes through faults and fissures on the flanks of the mountain
 - Soil CO_2 flux has created unlivable conditions for much vegetation

Mammoth Mountain, CA

- Five main tree-kill areas exist, all characterized by extreme root zone CO_2 concentrations
- Rate and spatial distribution of soil CO₂ flux: wellunderstood (Werner et al., Gerlach et al., Sorey et al.)
 - Abundance of airborne data available in the region
 - Gradient-like nature of response by Mammoth vegetation as a case study for ecological responses to future environmental perturbations, especially in vulnerable regions

Airborne

- Schwandner et al. (2017) demonstrated the potential for spaceborne detection of individual CO_2 plumes using OCO-2.
- However, greater resolution is needed to see the effect on individual trees.

Data

A wealth of information has been acquired over Mammoth mountain, including:

- Field CO₂ measurements
- Airborne spectrometer data, from which we can derive various indicators of vegetation health, type, and traits
- Thermal infrared imagery, from which we can derive land surface temperature and evapotranspiration
- Lidar data, from which we can derive slope, aspect, elevation, and vegetation height
- Fluorescence data

AVIRIS

AVIRIS Classic imagery was acquired in October 2014.

L2 reflectance data was used.
Spatial resolution is 13m.

 This scene was chosen to minimize snow cover.

MASTER

- Two MASTER datasets were obtained: one in 2013 and one in 2017. From the MASTER data, we derived:
 - Emissivity
 - Land surface temperatureEvapotranspiration
- Spatial resolution is 35m.

80

100

ASO Lidar

- The Airborne Snow Observatory (ASO) carries out regular LiDAR surveys over Mammoth Mountain.
- This dataset was acquired in 2017.

Field CO₂

 Field CO₂ measurements were made by Werner et al. in 2013, during a larger project that has been ongoing since 1991.

 Five degassing and tree-kill areas were measured using a LI-COR ® infrared gas analyzer.

• Data have been Kriged to a 1m grid.

Horseshoe Lake

Log Soil CO₂ Flux (g m⁻² d⁻¹)

Carbon dioxide measurements

÷

Dataset summary

Dataset	Dates	Product	Derived Products	Resolution
AVIRIS	Oct 2014	Reflectance	Spectral features Foliar traits*	13m
MASTER	Nov 2013 Jun 2017	Thermal Reflectance	Land Surface Temperature Evapotranspiration	35m
Lidar	Jun 2017	Point cloud	Elevation Slope, Aspect	*
Fluorescence	2017	Chlorophyll fluorescence	-	*
Carbon dioxide	Jun-Oct 2013	LiCOR soil CO2 flux	-	1m

* Data still being processed.

Hypothesis Testing Framework

- Covariate Balancing Propensity Scores stratify the data and control for confounding variables, such as rain, air temperature, and downwelling shortwave radiation.
- Exploratory data analysis on the strata, by evaluating the ability of CO2 to predict dependent variables within each strata (i.e. removing the confounding effect) individually, in pairs, etc.

*Ma, P., Kang, E.L. Spatial Statistical Downscaling for Constructing High-Resolution Nature Runs in Global Observing System Simulation Experiments, Technometrics, In Review.

CO_2 versus AVIRIS NIR

* Preliminary
 results; effects
 of confounding
 variables still
 to be addressed

p<0.01

CO₂ versus Land Surface Temperature

* Preliminary
 results; effects
 of confounding
 variables still
 to be addressed

p<0.01

CO_2 versus Evapotranspiration

* Preliminary
 results; effects
 of confounding
 variables still
 to be addressed

p<0.01

CO_2 versus remotely sensed ecosystem properties (total data cube)

	R ² (all data)	R ² (NDVI>0.1)	R ² (NDVI>0.3)	% remaining at 0.3
Horseshoe Lake	0.70	0.70	0.59	42%
South Side Fumarole	0.67	0.67	0.95	16%
Mammoth Fumarole	0.81	0.83	0.84	5%
Chair 12	0.55	0.57	0.57	56%
Reds Creek	0.57	0.66	0.73	16%

* Non-vegetation areas were masked.

Conclusions

 There is a strong relationship between CO₂ flux and our remote sensing datasets

• R² high across all 5 ground data locations

 Trends: as CO₂ flux increases, land surface temperature decreases and evapotranspiration increases

 Our results will have strong implications for ecological responses to elevated CO₂ in other parts of the world

 This extension illustrates the need for consistent airborne data retrieval in regions where we have the most to learn, like the tropics

Ongoing work

- Once lidar data have been processed, we will use them to remove the confounding effects of slope, aspect, and elevation.
- A concurrent study is investigating the correlation between modelled ground CO_2 and parameters that may be remotely sensed.