Joint Estimation of Atmosphere and Surface Reflectance: Initial Results from the AVIRIS-NG India Campaign

David R. Thompson*
Vijay Natraj
Robert O. Green
Michael Eastwood
Amit Sen
Jet Propulsion Laboratory, California Institute of Technology
*david.r.thompson@jpl.nasa.gov

(with support from)
B. K. Babu
Aloke Mathur
Bimal K. Bhattacharya
Manish Saxena
Space Applications Centre, ISRO, Ahmedabad 380015, Gujarat, India

Copyright 2017 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged.
Agenda

1. Joint retrieval of surface and atmosphere
2. Examples from the AVIRIS-NG India campaign
3. Going beyond lookup tables
Atmospheric correction
Atmospheric correction

\[\rho_{\text{TOA}} = \rho_{\text{atm}} + T \rho_{\text{s}} / (1 - S \rho_{\text{s}}) \]

Transmission

Path reflectance

Top of atmosphere reflectance

Spherical albedo

Surface reflectance
Conventional approach: sequential estimation of atmosphere and surface

1. In advance, do RTM calculations

 Lookup table for T, S, ρ_{atm} indexed by H_2O, etc.

2. Estimate atmospheric state from radiance

3. Algebraic Inversion

Radiance Spectrum

Reflectance Spectrum
Conventional approach: sequential estimation of atmosphere and surface

1. In advance, do RTM calculations

2. Estimate atmospheric state from radiance

3. Algebraic Inversion

Challenging to disentangle atmosphere & surface effects

Lookup table for T, S, ρ_{atm} indexed by H_2O, etc.
Simultaneous estimation of atmosphere & surface

1. In advance, do RTM calculations

Lookup table for T, S, ρ_{atm} indexed by H_2O, etc.

2. Iterative optimization of surface & atmosphere model
Simultaneous estimation of atmosphere & surface

1. In advance, do RTM calculations

Lookup table for T, S, ρ_{atm} indexed by H$_2$O, etc.

Can estimate spectrally-smooth atmospheric effects

2. Iterative optimization of surface & atmosphere model
Enables Optimal Estimation
[Rodgers et al., 2000]

• Measurement model:

\[y = F(x) + \epsilon \]

- Radiance measurement
- RTM prediction
- random error

• For covariances \(S \), the iterative loop minimizes the error:

\[
\chi^2 (x) = (F(x) - y)^T S^{-1} (F(x) - y) + (x - x_a)^T S a^{-1} (x - x_a)
\]

- Model match to measurement
- Bayesian prior
Advantages

- Permits atmosphere/surface coupling, relaxes Lambertian assumption
- **Retrieve aerosol parameters** using information across the VSWIR range, improving accuracy of aerosol correction.
- **Incorporates ancillary measurements** in a principled way via the prior distribution
- **Degree of Freedom (DOF) analysis** permits a rigorous analysis of VSWIR atmospheric information content
- **Posterior uncertainty estimates** for use in downstream analyses.
Agenda

1. Joint retrieval of surface and atmosphere

2. Examples from calibration/validation sites

3. Going beyond lookup tables
Hyderabad spectrum fit example
ang20151218t105122

Atmospheric H₂O vapor, surface water and ice thickness, aerosol visibility

Surface (linear mixture)

Surface (linear mixture)

Surface (linear mixture)
Hyderabad spectrum fit example

ang20151218t105122
Desalpar calibration / validation site
ang20160210t061239

Iteration 1

Radiance (µW nm⁻¹ sr⁻¹ cm⁻²)

Wavelength (nm)

H₂O STR: 1.1000
SURF_LQD_PTH: 0.0000
SURF_ICE_RTH: 0.0000
MIX_6: 0.0351
MIX_1: 0.0123
MIX_2: 0.0000
MIX_3: 0.0077
MIX_4: 0.0087
MIX_5: 0.0000
MIX_6: 0.0038
MIX_7: 0.0014
MIX_8: 0.0000
Desalpar calibration / validation site
ang20160210t061239

No residual correction or smoothing applied
Ivanpah calibration / validation site
ang20170328t212316

No residual correction or smoothing applied
Agenda

1. Joint retrieval of surface and atmosphere
2. Examples from calibration/validation sites
3. Going beyond lookup tables
Fast Radiative Transfer

• Two-stream exact-single-scattering (2S-ESS) model (Spurr and Natraj, 2011)
 1. 2S computes the approximate multiple scattering field
 2. ESS calculates the single-scatter field.

• Incorporates state of art representations
 – Nakajima-Tanaka (N-T) correction
 – Delta-M scaling

• For calculations in a 20-layer atmosphere with 100 spectral points, 2S is ~800 times faster compared to DISORT with eight discrete ordinates in the half-space.

• Accurate to within 0.1% of an “exact” RT model, but with computational speed comparable to two-stream models.
Joint surface and atmosphere estimation

- Elegant unified model
- Flexibility for large, diverse state vectors
- Can model coupled atmosphere & surface, non-Lambertian reflectance
- Can estimate spectrally-smooth atmospheric effects
- Principled statistical foundation, uncertainties
- Path to overcome lookup table simplifications thanks to emerging RTM technologies
Thanks!

NASA Program NNH16ZDA001N-AVRSN, “Utilization of Airborne Visible/Infrared Imaging Spectrometer – Next Generation Data from an Airborne Campaign in India.” Program manager Woody Turner

The AVIRIS-NG Team, including Sarah Lundeen, Brian Bue, Winston Olson-Duvall, Ian McCubbin, Mark Helmlinger, and others