Can HyspIRI-like data constrain accurate temperature and emissivity measurements of active volcanic surfaces?

Michael Ramsey & James Thompson
University of Pittsburgh, Department of Geology and Environmental Science, Pittsburgh, PA, USA
Quantifying Active Volcanic Processes and Mitigating Their Hazards with HyspIRI Data

- proposed science questions:
 - how does the cooling and formation of a viscoelastic hot glassy surface affect the average emissivity of basaltic lava over time?
 - can these constituents be quantitatively extracted from future HyspIRI data of active flows to produce improved temperature and compositional estimates?
 - what are the ideal spatial resolution and band positions for the HyspIRI IR instrument to extract quantitative volcanological data?
 - can this approach in total be helpful for the prediction of lava flow advance over time through quantitative modeling of HyspIRI data?
Science Goals

<table>
<thead>
<tr>
<th>overview</th>
<th>background</th>
<th>data</th>
<th>results</th>
<th>summary</th>
</tr>
</thead>
</table>

- **Build, Test and Calibrate New Field Instrument**
 - in time for the field campaign
 - miniature multispectral TIR Camera (*MMT-Cam*)
 - calibrate and fully automate collection, processing and analysis
 - see James Thompson’s poster tomorrow (*MMT-Cam_v3.5 on display*)

- **Emissivity Change**
 - evaluate the change as lavas propagate and cool
 - evaluate the impact on extracted temperatures
 - compare field data to coincident MASTER and ASTER data

- **Modelling**
 - determine the affect of emissivity on rheological models used to forecast lava flow propagation and eruption rates
Field Campaign

overview | background | data | results | summary

- **Kilauea, Hawai‘i**
 - shield volcano
 - eastern slope of Mauna Loa
 - island of Hawai‘i

- **Lava Flow** (*primary target*)
 - Puʻu ʻŌʻō episode 61g flow

- **Lava Lake** (*secondary target*)
 - Halemaʻumaʻu Crater
 - continuous activity since 2010
 - 250 m long and 190 m wide
Field Campaign

overview | background | data | results | summary

- **Kilauea, Hawaiʻi**
 - shield volcano
 - eastern slope of Mauna Loa
 - island of Hawaiʻi

- **Lava Flow (primary target)**
 - Puʻu ʻŌʻō episode 61g flow

- **Lava Lake (secondary target)**
 - Halemaʻumaʻu Crater
 - continuous activity since 2010
 - 250 m long and 190 m wide

2017 HyspIRI Science and Applications Workshop
Pasadena, CA (17-19 October 2017)
Field Campaign

- **Kilauea, Hawai‘i**
 - shield volcano
 - eastern slope of Mauna Loa
 - island of Hawai‘i

- **Lava Flow (primary target)**
 - Pu‘u ʻŌʻō episode 61g flow

- **Lava Lake (secondary target)**
 - Halema‘uma‘u Crater
 - continuous activity since 2010
 - 250 m long and 190 m wide
TIR Data

- 19 Jan to 31 Jan 2017
 - 8 acquisition opportunities
- 4 MASTER overpasses
 - 2 day and 2 night
- 4 ASTER overpasses
 - 1 day and 3 night

• critical for us: MASTER +ASTER
 - only ONE daytime collect
 - NO nighttime collects
Primary Airborne Instruments

- **MASTER**
 - 0.4-13 microns wavelength range
 - 50 channels
 - saturation
 - MIR band 26 (4.07µm) at 640 K (850 K at low gain)
 - TIR bands at ~420K

- **AVIRIS**
 - 0.4-2.5 microns wavelength range
 - 224 channels
Initial Data Analysis

overview background data results summary

- 10 meters
- 30 meters
- 60 meters
- 13 meters
- 30 meters
- 60 meters

Radiance (W.m\(^{-2}\).sr\(^{-1}\).μm\(^{-1}\))

Wavelength (μm)

Radiance Planck Curve
AVIRIS: 26 Jan 2017 at 05:57 UTC (19:57 HST on 25 Jan)

- maximum Plank-derived temperatures:
 - **center:**
 - 13 m: \(\sim 1430 \text{ K} (\lambda_{\text{max}} = 1.49 \mu\text{m})\)
 - 30 m: \(\sim 1430 \text{ K} (\lambda_{\text{max}} = 1.49 \mu\text{m})\)
 - 60 m: \(\sim 1400 \text{ K} (\lambda_{\text{max}} = 1.49 \mu\text{m})\)
 - **edge:**
 - 13 m: \(\sim 1010 \text{ K} (\lambda_{\text{max}} = 2.26 \mu\text{m})\)
 - 30 m: \(\sim 950 \text{ K} (\lambda_{\text{max}} = 2.26 \mu\text{m})\)
 - 60 m: \(\sim 1050 \text{ K} (\lambda_{\text{max}} = 2.26 \mu\text{m})\)
MASTER: 26 Jan 2017 at 05:57 UTC \(19:57\) HST on 25 Jan

- maximum Plank-derived temperatures:
 - center:
 - 10 m: \(~860\) K \(\left(\lambda_{\text{max}} = 1.59\ \mu\text{m}\right)\)
 - 30 m: \(~860\) K \(\left(\lambda_{\text{max}} = 1.59\ \mu\text{m}\right)\)
 - 60 m: \(~690\) K \(\left(\lambda_{\text{max}} = 2.21\ \mu\text{m}\right)\)
 - edge:
 - 10 m: \(~550\) K \(\left(\lambda_{\text{max}} = 2.26\ \mu\text{m}\right)\)
 - 30 m: \(~570\) K \(\left(\lambda_{\text{max}} = 2.26\ \mu\text{m}\right)\)
 - 60 m: \(~570\) K \(\left(\lambda_{\text{max}} = 2.26\ \mu\text{m}\right)\)
Initial Data Analysis

W-E Transects of Lava Lake using MASTER

- Max. Radiance (W m⁻² sr⁻¹ μm⁻¹)
- λ_max (μm)
- Max temperature (K)
- Portion of molten surface in pixel

Pixel: W-E

10 m, 30 m, 60 m
Emissivity Extraction

- saturation over lava lake produces inaccurate spectra as one would expect
 - documented numerous times with ASTER TIR L2 data
- at crater-edge pixels, mixing with cooler/older basaltic lavas minimizes saturation
 - emissivity is resolved
 - loss of spectral depth with spatial resolution degradation
MASTER: 26 Jan 2017 at 05:57 UTC (19:57 HST on 25 Jan)

- maximum Plank-derived temperatures:
 - center:
 - 10 m: \(\lambda_{\text{max}} = 10.58 \, \mu m \) \(\sim 290 \, K \)
 - 30 m: \(\lambda_{\text{max}} = 10.11 \, \mu m \) \(\sim 290 \, K \)
 - 60 m: \(\lambda_{\text{max}} = 10.58 \, \mu m \) \(\sim 285 \, K \)
Preliminary Results

Saturation of all TIR/MIR MASTER Wavelengths
- max radiance between 1.5-4 microns at lava lake
- require high saturation temperature
 - ~1400 K in the MIR
 - ~900 K in the TIR

Thermal Mixing Within Pixels
- <2 – 40 % fraction of molten surface across lava lake

Emissivity Errors From Saturated Pixels (obviously)
- becomes less with lower spatial resolution and mixing at thermal boundaries (e.g., perimeter of lake)
- spectral features shallow with spatial resolution degradation
Did Not Achieve Our Primary Goal

- limited lava flow production and access during the time of the field campaign
 - would provide information on lower-temperature processes and smaller-scale mixing
 - much higher spatial resolution for the MMT-Cam data
 - direct connectivity to flow-scale modeling parameters

Real-Time Communication Was Frustrating

- critical considering access to (and challenging conditions of) the lava lake
 - limited knowledge of data acquisitions
 - cancelled flights to due HyTES issues
 - suggest direct MMS to field parties
Future Work

- **Redeploy to Hawaiʻi in 2018**
 - hopefully access active surface flows / acquire data
 - develop operational methodology for propagating lava flows

- **Evaluate Emissivity Changes**
 - spatiotemporal variability during active flow propagation
 - detailed study of emissivity change with cooling/thickening glassy crust

- **Integrate IR Measurement and FLOWGO Modeling**
 - determine influence on model results
Thanks To

- Matt Patrick and the rest of the USGS HVO staff
- Hawaii Volcanoes National Park
- NASA ground and flight crews
- HyspIRI Preparatory Campaign group
- our dedicated field-assistant and SPAM connoisseur
MASTER: 26 Jan 2017 at 05:57 UTC
- Night flight: 19:57 HST on 25 Jan

Maximum temperature:
Center:
- 10 m: ~415 K ($\lambda_{\text{max}} = 8.64 \, \mu\text{m}$)
- 30 m: ~400 K ($\lambda_{\text{max}} = 8.64 \, \mu\text{m}$)
- 60 m: ~380 K ($\lambda_{\text{max}} = 8.64 \, \mu\text{m}$)

Edge:
- 10 m: ~400 K ($\lambda_{\text{max}} = 8.64 \, \mu\text{m}$)
- 30 m: ~390 K ($\lambda_{\text{max}} = 8.64 \, \mu\text{m}$)
- 60 m: ~375 K ($\lambda_{\text{max}} = 8.64 \, \mu\text{m}$)
Lava Lake – Radiance Curves (Edge)

![Radiance Curves](image)

- **10 meters**
- **30 meters**
- **60 meters**

MASTER

- **13 meters**
- **30 meters**
- **60 meters**

AVIRIS

- **Radiance**
- **Planck Curve**

[Wavelength (μm)]
Lava Lake - Transects

W-E Transects of Lava Lake using AVIRIS

Max Radiance (W/m²sr/μm⁻¹)

λₘₐₓ (μm)

Max temperature (K)

Portion of molten surface in pixel

Pixel: W-E

Pixel size: 13 meters

10 m

30 m
Lava Lake - Transects

W-E Transects of Lava Lake using MASTER

- Pixel size: 10 meters
- Lambda max (µm)
- Max Radiance (W.m⁻².sr⁻¹.m⁻¹)
- Max temperature (K)
- Portion of molten surface in pixel

Pixel: W-E

10 m
30 m

Pixel size: 10 meters
Lava Flow - Transects

Transects across lava flow using MASTER

Max Radiance (W/m² sr/µm)

λ_{max} (µm)

Max temperature (K)

Portion of molten surface in pixel

Pixel: W-E

N

Pixel size: 10 meters

10 m 30 m
Lava Flow - Transects

Transects across lava flow using MASTER

Pixel: W-E

- Max. Radiance (W m⁻² sr⁻¹ μm⁻¹)
- λ_max (μm)
- Max. temperature (K)
- Portion of molten surface in pixel

10 m — 30 m — 60 m