2016 HyspIRI Mission Concept Study:
Combined VSWIR, TIR and IPM With Current Technology

Robert Green, Simon Hook, Bill Johnson, Michael Mercury and HyspIRI Team

HyspIRI Workshop 2016
Contents

- Science Summary
- Mission Concept Lineage
- 2016 Concept Overview
- Orbit + Coverage
- HyspIRI Payload (VSWIR, TIR, IPM)
- Spacecraft
- Telecom link
- MOS/GDS
- Conclusion
HyspIRI Science Summary

HyspIRI Science

- **Climate:**
 - Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration

- **Ecosystems:**
 - Global biodiversity, plant functional types, physiological condition, and biochemistry including agricultural lands

- **Fires:**
 - Fuel status; fire frequency, severity, emissions, and patterns of recovery globally

- **Coral reef and coastal habitats:**
 - Global composition and status

- **Volcanoes:**
 - Eruptions, emissions, regional and global impacts

- **Geology and resources:**
 - Global distributions of surface mineral resources and improved understanding of geology and related hazards

- **Applications:**
 - Disasters, EcoForecasting, Health/AQ, Water

Preparatory airborne campaigns have been advancing and refining science, applications, algorithms, and processing

Mission Concept Lineage

• **Level 1 Measurement Requirements**
 – Vetted by community at workshops and in literature (many refereed journal articles)

• **Implementation options:**

 Original HyspIRI Baseline (2012)
 VSWIR 60 m / 19 day
 TIR 60 m / 5 day
 3-5 years

 SmallSat Free-Fliers (2015)
 VSWIR 30 m / 16 day
 TIR 60 m / 4 day
 2 years
 Meets SLI Rqt’s

 Updated HyspIRI Baseline (2016)
 VSWIR 30 m / 16 day
 TIR 60 m / near 4 day
 3-5 years
 Meets SLI Rqt’s
2016 Concept Overview

- **2016 Mission Concept Goal**
 - Update the HyspIRI mission concept baseline to use the latest developments in instrument, spacecraft and ground systems.
 - Use only existing technology
 - PHyTIR, ECOSTRESS and CWIS have brought the latest TIR and VSWIR to \geq TRL 6
 - IPM based on Space cube 2.0 \geq TRL 6
 - Flight system, Ground System and Science Data System all use existing technology

![SLI Swath Dyson (CWIS)](image1)

![PHyTIR](image2)
Orbit and Coverage

504 km Sun Synchronous Orbit (10:30 AM LMTDN)

• 16 day global coverage for VSWIR

• 4 day near-global coverage for TIR
 – Full coverage in 5 days
HyspIRI Payload

• VSWIR
 – 2x CWIS Dyson spectrometers
 – 185 km swath
 – 30 m resolution
 – 83 kg
 – 100 W

• TIR
 – PhyTIR Demo on ECOSTRESS
 – 518 km swath
 – 60 m resolution
 – 48 kg
 – 170 W

• IPM
 – Four Card Flight Unit
 – 5 x 7 x 9 inches
 – 5.8 kg
 – 20 watts (typical)
Spacecraft Payload Capability

- Solutions from various multiple vendors can accommodate payload (CBE):
 - 137 kg
 - 290 W
 - 450 Gb / orbit
 - 400 GB onboard storage (7 nominal orbits worth of storage)
- Pointing (3 sigma):
 - 36 arcsec knowledge
 - 6 arcsec/frame stability
 - 0.25 deg control
Telecom Link

• 1 Gbps Ka-Band single polarization link using QPSK modulation
• Uses Ka Modulator (KAM) and Solid State Power Amplifier (SSPA) developed for NISAR Program (Launch in 2020)
• 2 axis gimbal to maximize downlink time per orbit
MOS/GDS + Onboard Compression

• MOS/GDS
 – HyspIRI preparatory campaign data system experience
 – Ka Band being planned on NiSAR (Launch in 2020)
 – Uses ground stations operated by KSAT through the NEN in Svalbard and Antarctica
 • Ka-band already in use at those locations
 – 10 minutes of ground station access each orbit
 – 600 Gb per orbit capability
 • 450 Gb orbit average data volume

• Onboard Processing
 – 4:1 Fast lossless compression (Klimesh, Kiely, Yeh)
 – Cloud screening using 0.45 and 1.25 µm channels (Thompson et al.)

• Ground processing
 – HyspIRI airborne preparatory campaign pipeline demonstrated
Conclusion

• 2016 HyspIRI Mission Concept:
 – VSWIR: 16 day / 30 m
 – TIR: near 4 day / 60 m

• Enabled by:
 – Onboard data compression and cloud screening
 – Proven Ka-Band link to ground

• Builds upon:
 – ECOSTRESS EV-I selected instrument
 – SLI Dyson spectrometer design published in Optical Engineering
 – HyspIRI Airborne Preparatory Campaign