An Overview of the Remote Sensing of Heterogeneous Volcanic Plumes

Vincent J. Realmuto Jet Propulsion Laboratory

© 2016 California Institute of Technology. Government sponsorship acknowledged. Spectroscopy of Volcanic Plumes: Sarychev Peak Eruption June 2009

(a) MODIS-Aqua 2009-06-16

(b) AIRS BTD Spectra 2009-06-16

Wavelength (µm)

Ash Cloud BTD Spectrum

12

13

(c) Model BTD Spectra

Heterogeneous Plumes from Sarychev Peak Eruption, Kurile Islands, Russia

Sample ★ Clear Path Locations: ★SO₂ Plume

Ash Plume

Brightne

- Spectra of SO₂ plumes show evidence of ash
- Spectra of ash plumes show evidence of SO₂
 - No spectral evidence for SO₄ aerosols

Retrieval Procedure Requires Profiles of Atm. Temp, H_2O , and O_3 as Input

Radiance Spectra from Clear Path (Plume-Free) Regions are used to "Tune" the H₂O and O₃ Profiles

Tuning is a Time-Consuming Process: Retrieval of H₂O is More Efficient and a Better Characterization of Variations in H₂O

Strong H₂O Absorption in MODIS 28 Obscures the Surface

Moderate H₂O Absorption in MODIS 33 Does Not Obscure the Surface

Composite Spectrum of a Heterogeneous Volcanic Plume

Spectra were generated with MOD5.3doe at 0.1 cm⁻¹ resolution and convolved with the AIRS spectra response.

Note the change in the temperature scale between Spectra (a) – (c) and (d) – (e), and the gap in AIRS spectral coverage between 8.2 and 8.8 μ m.

O₃ "artifact" (red boxes) is common to difference spectra

Preparing for the Use of HyspIRI to Monitor the Impact of Volcanic Plumes on Air Quality

Co-Investigators and Collaborators: F. Schwandner, UCLA/JIFRESSE A.J. Sutton, USGS-HVO T. Elias, USGS-HVO S. Businger, UH-Manoa K. Horton, FlySpec, Inc.

Production of Vog has Intensified Since Start of Summit Eruption in 2008

- SO₂ Emissions Increased from 140 to 2500 mt/day in March, 2008
- Annual Averages of SO₂ and PM_{2.5} Exceeded Air Quality Standards (2011 & 2012)
- Increased Cases of Respiratory Disease and Hypertension in Downwind Communities
- Federal Disaster Relief to Farmers/Ranchers since 2008

Rainbow Over Halemaumau (courtesy of Steven Businger, UH-M)

Volcanic Smog (Vog): Suspension of Sulfate (SO_4) Aerosols, Sulfur Dioxide (SO_2) , and H₂O vapor/droplets

- Particulate Matter < 2.5 μm Diameter (PM_{2.5}) is a Respiratory Hazard
- Corrosive Pollution Damages Crops and Property

UH VMAP Project: Hourly Forecasts of PM_{2.5}

- Initialized by HVO Measurements of SO₂ Emission Rate
- Prediction Skill (Training) via Comparison with DOH Stations
- High Resolution of Model Domain (1 km Grid Spacing) + Sparse DOH Network
 = Most of the Forecast Field
 <u>Cannot be Validated</u>

AWRF METEOROLOGICAL DATA

Plume Tracker Analysis of ASTER TIR Data

SO₂ Retrievals at High Spatial Resolution (90 m) Provide Important Input Parameters for Vog Model

- 2-D Maps of SO₂
 Source is Superior to Line Source Model
- Longitudinal Profiles Record the Chemical Evolution of Plume - Constrain SO₂ Loss Rates
- Spatial Resolution of MODIS (1 km) and VIIRS (750 m) TIR Data are Finer than Vog Model (1 km)

AVIRIS-Based Mapping of Aerosol Optical Depth

Compare Spectra of Surfaces Outside and Beneath Aerosol Plumes

- Measure Increase in Radiance Due to Aerosol Scattering
- Standard Reflectance Product: Apparent Increases in Reflectance Attributed to Increase in AOD

Validate Retrievals with Sun Photometer Measurements

HyTES Deployment will Enable Unique Identification of SO₄ Aerosol

MASTER Resolution

- Spectra of SO₂ and SO₄ are Similar
- Broad Absorption Centered near 8.7 μm

HyTES Resolution

 Detect SO₄
 Absorption Features at 10 and 11 μm

Evolution of Plume Tracker

- Hyperspectral Radiance Observations
- Extend Retrieval Procedures to "New" Gas Targets

MODTRAN Output 2 cm⁻¹ ≈ HyTES Resolution

NIST Spectra ~ 4 cm⁻¹

Clutter Match Filter/ Plume Dilation (Hulley et al., 2016)

Plume Tracker V.4.3

La Plata, New Mexico Line3-Run1-Segment01 2015-04-20 16:21:37 UTC

CH₄ Column Density (ppm-m)

2500

3500

1500

AVIRIS-NG CH₄ Retrievals from Four Corners Survey (Modified from Frankenberg et al., 2016)

Local Gas Plume in Plume Tracker 5

Eliminates approximation of plume gas as semi-infinite layer

- Upgrades thermal scatter model
 - Replaces 2-stream Isaacs with N-stream DISORT
 - No added computational time when N is set to 2
- Allows ambient concentrations to be retained
- Decouples plume profile from atmospheric layering
 - Introduces option to define detailed plume profile when available
- Current implementation allows modeling of all HITRAN line compilation species (key species highlighted in red)
 1=H₂O, 2=CO₂, 3=O₃, 4=N₂O, 5=CO, 6=CH₄, 7=O₂, 8=NO, 9=SO₂, 10=NO₂, 11=NH₃, 12=HNO₃, 13=OH, 14=HF, 15=HCI, 19=OCS, 20=H₂CO, 22=N₂, 23=HCN, 24=CH₃CI, 25=H₂O₂, 26=C₂H₂, 27=C₂H₆, 28=PH₃, 29=COF₂, 31=H₂S, 32=HCOOH, 33=HO₂, 36=NO+, 37=HOBr, 38=C2H4, 39=CH₃OH, 40=CH₃Br, 41=CH₃CN, 43=C₄H₂, 44=HC₃N, 45=H₂, 46=CS, 47=SO₃

Thank You for Your Attention.