BIRTH OF A NOTION

Stephen G. Ungar EO-1 Mission Scientist 1996 – 2008 GSFC Scientist Emeritus 2008 – ???? Petya K. Campbell Research Scientist UMBC (at GSFC)

THE STORY OF EO-1HYPERION Early on, there was the GISS Airborne Spectroradiometer.

We flew transects in support of LACIE and mineral exploration.

June, 1977

ERIM and LARS also had "Field" Spectrometers

MATURE ALFALFA

FIELD DESCRIPTION

30 to 34 inches high, 100% leaf cover, thick uniform canopy. Purple flowers, 1 to 3% of alfalfa plants. 2nd year crop. Soil dry. Imperial, light brown silty clay (7.5YR 6/4).

PHOTO INTERPRETATION

homogeneous tone, except furrows are slightly detectable: texture is absent or fine; high density; total cover; furrows run parallel with FL.

10:40 AM 5/16/75 Sun Elev = 71⁰

_

MATURE ALFALFA

FIELD DESCRIPTION

30 to 34 inches high, 100% leaf cover, thick uniform canopy. Purple flowers, 1 to 3% of alfalfa plants. 2nd year crop. Soil dry. Imperial, light brown silty clay (7.5YR 6/4).

PHOTO INTERPRETATION

homogeneous tone, except furrows are slightly detectable; texture is absent or fine; high density; total cover; furrows run parallel with FL.

10:40 AM 5/16/75SUN ELEV = 71⁰

Then there was:

- **GER(S)** Collins ~1980-82 ASD ~1981-83 Goetz AVIRIS Vane/Green ~1990 HyMap HyVista/Cocks ~1996-98 Lewis TRW/Pearlman 1997 HSI & LEISA
- EO-1 NMP/Ungar et al 2000 Hyperion & LAC

Yes, I know there were many others as well !!

EO-1 Hyperion: Pathfinder to Imaging Spectroscopy from Low Earth Orbit

Launch Date: Nov. 21, 2000

LAUNCH

ORBIT

Launch Vehicle: Delta 7320

Co-manifested with SAC-C

705 Km altitude Sun-synchronous, circular orbit inclined at 98.2°

Descending node with an equatorial crossing about one minute behind Landsat 7 What separates the men from the boys is the size of their toys!

Season's Greetings, Steve Ungar

EO-1 Hyperion: Pathfinder to Im'g Spectroscopy from LEO

LAUNCH

ORBIT

Launch Date: Nov. 21, 2000 Launch Vehicle: Delta 7320 Co-manifested with SAC-C

05 Km altitude Sun-synchronous, circular orbit inclined at 98.2°

Descending node with an equatorial crossing about one minute behind Landsat 7

What separates the men from the boys is the size of their toys!

Season's Greetings, Steve Ungar

EO-1 Flight Instruments

ATMOSPHERIC CORRECTOR (AC)

EO-1 Spectrometers

1X VNIR + 1X SWIR

EO-1 Grating Spectrometer

EO-1 Instrument Overviews

	Landsat 7	EO-1	EO-1	
Parameters	ETM+	ALI	HYPERION	LAC
Spectral Range	0.4 - 2.4 µm*	0.4 - 2.4 µm	0.4 - 2.5 µm	0.9 - 1.6 µm
Spatial Resolution	30 m	30 m	30 m	250 m
Swath Width	185 Km	37 Km	7.7 Km	185 Km
Spectral Resolution	Variable	Variable	10 nm	3 - 9 nm**
Spectral Coverage	Discrete	Discrete	Continuous	Continuous
Pan Band Resolution	15 m	10 m	N/A	N/A
Number of Bands	7	10	220	256

* Excludes thermal channel

** 35/55 cm⁻¹ constant resolution

EO-1 Imaging Spectrometer Overviews

	EO-1	
Parameters	HYPERION	LAC
Spectral Range	0.4 - 2.5 µm	0.9 - 1.6 µm
Spatial Resolution	30 m	125/250 m
Swath Width	7.7 Km	185 Km
Spectral Resolution	10 nm	3 - 9 nm
Spectral Coverage	Continuous	Continuous
Pan Band Resolution	N/A	N/A
Number of Bands	220	256

EO-1 Accelerated Mission Southern Hemisphere Field Campaigns January – February 2001

Australian Test Sites

Argentine/AVIRIS Sites

Investigator Research Topics

Southern Hemisphere Campaign: ARGENTINA – AUSTRALIA – ELSEWHERE

Research Topic	Principal Investigator		
Forest Logging in Amazonia	Asner, G. P., University of Colorado		
Desertification	Asner, G. P., University of Colorado		
Forest Composition & Function	Martin, M., University of New Hampshire		
Inter-Sensor Calibration	Huete, A. R., University of Arizona, Tucson		
Arid Vegetation Abundance	Mustard, J. F., Brown University.		
Tropical Forest Burn Scars	Liew, S. C., National University of Singapore		
Forest Composition/Structure	Townsend, P. A., University of Maryland		
Land Cover/Land Use	White, W. A., Crawford, M., University of Texas at Austin		
Sustainable Forest Development	Goodenough, D. G., Natural Resources Canada		
Monitoring Forest & Rangeland	Gong, P., University of California, Berkeley		
Non-Native Plant Species	McGwire, K. Desert Research Institute		

Investigator Research Topics (continued)

Research Topic	Principal Investigator	
Ecological Applications in Yellowstone National Park	Boardman, J. W., AIG, Colorado	
Commercial Applications	Cassady, P. E., Boeing, Washington	
Radiometric and Spatial Evaluation of ALI and Hyperion	Biggar, S. F., University of Arizona (Kurt Thome)	
Atmospheric Correction	Carlson, B. E., NASA /GISS, New York	
Atmospheric Correction and Sparse Vegetation Mapping	Goetz, A. F. H., University of Colorado	
Australian Hyperspectral Calibration and Validation Sites	Jupp, D. L. B., CSRIO, Australia	
Integrated Assessment of EO-1 and Landsat Instrument Suites	Meyer, D. J., EDC, South Dakota	
Canopy Temperature Estimation	Smith, J. A., NASA GSFC, Maryland	
Lunar Calibration	Kieffer, H., USGS, Flagstaff, AZ	

Investigator Research Topics (continued)

Research Topic	Principal Investigator	
Invasive Plants: Chinese Tallow	Ramsey III, E. W., USGS, Denver	
Invasive Leafy Spurge	Root, R., USGS	
Agricultural Monitoring	Liang, S., USDA, Maryland	
Inter-Satellite Comparison	Moran, M. S. USDA, Tucson, Arizona.	
Fire Hazard Assessment	Roberts, D. A., University of California, Santa Barbara	
Geologic Validation of Hyperion	Kruse, F. A., AIG, Boulder, Colorado	
Volcanic Debris flow Hazards	Crowley, J. K., USGS, Reno, Nevada	
Analysis of Hot Spots	Flynn, L., University of Hawaii (R. Wright)	
Environmental Monitoring of Coastal/Inland Water in Japan	Matsunaga, T., Tokyo Institute of Technology.	
Oceanography, Pollution and Urban Mapping	Abrams, M. J., JPL, California; R. Bianchi and L. Alberotanza, NRC, Italy.	
Glaciological Applications	Bindschadler, R., NASA/GSFC, Maryland	

EO-1 Acquisitions Since Launch EO-1 has acquire more than 90,000 Hyperion scenes (As of September 2016).

The EO-1 Image Collections

The user community includes science, disasters, technology developments, volcanoes, etc.

Hyperion Spectral Time Series at FLUX Sites

Number of cloud free images at FLUX sites

EO-1 Data Product Usage*

After Landsat 8 data became available in 2013 there was a large drop in ALI requests and downloads. There was an equally **large increase in Hyperion** downloads in 2014,

* Based on USGS EO-1 Distribution Reports

EO-1 Data Product Usage*

..... and even larger increase in Hyperion downloads in 2015.

The EO-1 Publications and Citations*

EO-1 User Community

Academic Institution
General Public
Non-U.S. Government
Non-profit Organization
Other
Private Business
U.S.Government

Larger EO-1 users include: The disaster support, "cloud prediction support" study for GeoCape (Decadal Survey Mission), EnMAP pre-launch support (Hyperion), Landsat 8 support, Sentinel-2, science requests for time series and/or large scale mapping for: mineralogy, tropical spectral diversity, terrestrial ecology, signal processing, and simulations for HyspIRI, Sentinel-3, and EnMAP.

Hyperion Spectral Time Series at FLUX Sites

Using EO-1 Hyperion Data as HyspIRI Preparatory Data Sets for Volcanology Applied to Mt Etna, Italy

Michael Abrams, Dave Pieri, Vince Realmuto, and Robert Wright

Use of Hyperion for Aquatic Remote Sensing

- Hyperion has been useful to develop techniques for future global applications for missions such as HyspIRI, PACE, and GeoCAPE.
- Hyperion data were collected Sept 2015 to support cruises near the the Florida Key to further hyperspectral algorithms.
- Lunar observations with Hyperion could be valuable to improving consistent calibration techniques across NASA's ocean color climate data record.

SHALLOW/TURBID WATER FOCUS

- Hyperion spatial and spectral resolution is useful for coastal and inland aquatic applications.
- Hyperion Signal-to-Noise Ratio (SNR) is lower than the Hyperspectral Imager for the Coastal Ocean (HICO).
- So, spectral (or spatial) aggregation is necessary for the dark water of the open ocean.

Top-of-Atmosphere Radiance (Lt)

Desert Sites used for Vicarious Calibration

Lake Frome

RR Valley

Arizaro/Barreal Blanco

Post Launch MTF Approach

- Calculate cross-track and in-track MTF using a step response and impulse response example
- Results of on-orbit analysis give good agreement with the pre-launch laboratory measurements

Example: Cross-track MTF

- Scene is Port Eglin from Dec 24, 2000. Bridge is the Midbay bridge. Bridge width is 13.02 meters.
- Bridge angle to the S/C direction is small so every 5th line is used to develop the high resolution bridge image.
- MTF result at Nyquist is between 0.39 to 0.42 while the preflight measurement was 0.42.

Special targets for characterization

Searchlights -California

> Gas Flares -Moomba

EO-1 Accelerated Mission Southern Hemisphere Field Campaigns January – February 2001

AVIRIS Twin Otter Aircraft

Argentine/AVIRIS Sites

The EO-1 2001 Field Campaign

NO SMOKING

1/2

AVIRIS Overflights

The EO-1 2001 Field Campaign

arreal Blanco

Radiometric Calibration

- Ground Truth Referencing
 - Lake Frome, Au ground truth collected by CSIRO.
 - Barreal Blanco and Arizaro Argentina ground truth collected by U. of Arizona and U. of Colorado
 - Ivanpah Playa ground truth collected by U. of Arizona
 - AVIRIS underflights

Ground Truth Site: Lake Frome, Au

The EO-1 2001 Field Campaign

Central Australia

The EO-1 2002 Field Campaign Salar de Arizaro - 11 Dec. 2002

EO-1 ... The Mission Continues!

Where we've been!

<u>Spectral Science & Applications Terrestrial</u> <u>Carbon Mission</u>

Investigating the use of spectral information in the reflective region (0.4 – 2.5 μ m) to assess significant contributors to the global carbon budget.

Science Theme:

Applications Theme:

Carbon Sequestration Ecosystem response to disturbance and recovery Vegetation functional groups Carbon Management Wildfire Detection Wildfire Remediation

Investigate important Carbon Science Hypotheses related to

- Ecosystem response to disturbance and recovery
 - Decompose the scene into continuous fields of sunlit & shaded over story, sunlit & shaded under story, hence biomass density.
- Vegetation functional groups
 - Decompose the scene into continuous fields of percent bare, herbaceous, water, trees (deciduous, evergreen, broadleaf, needleleaf)

SpectraSat Lunar Mission

Investigating the use of spectral information in the reflective region (0.4 – 2.4 μ m) to explore significant features and properties of the lunar surface.

Major Theme:Mineral ExplorationGeological Mapping

Ancillary Theme: Resource Analysis "Water" Detection Identify Anomalies

EO-1 has viewed the moon!

(EO-1 ALI Pan band)

Out of This World! (Views with the EO-1 ALI Pan band)

Half Moon

Jupiter

Full Moon

Flora Carbon Science

vectra Sa

Flora- Goddess of Spring and Flowers

Proposed Mission Overview

Stephen Ungar Mission Scientist

IGARSS- 2004 Anchorage, AK Sept. 26, 2004

Science Team Members

Greg Asner, Stanford

Stephen Ungar, GSFC Robert O. Green, JPL Forrest Hall, UMBC Robert Knox, GSFC

Mary Martin, UNH Betsy Middleton, GSFC Dar Roberts, UCSB Susan Ustin, UC-Davis

- PI, Science Team Leader - fractional cover, condition

- Project Scientist
- Inst. Science, calibration
- global data products, disturbance
- Alfredo Huete, U of Arizona cover and condition
 - Deputy Project Scientist ecosystem dynamics
 - function and condition (biochemistry)
 - function and condition (photobiology)
 - functional type and condition
 - functional type & condition, wetlands

Others TBD - atmospheric characterization, coastal zone

Full Spectral Landsat Swathwidth

Basic Imaging Spectrometer Characteristics

	Module	Observatory
Spectral Range	0.4 – 2.5 μm	210 Channels
Sampling Interval	10 nm	10 nm/Ch
Swath Width	20 km (640 pixels)	9 modules (180 km)
Pixel Size	31.25 m	31.25 m
SNR (ZA=60°, R=30%)	VNIR - 600 SWIR - 450	VNIR - 600 SWIR - 450
Digitization	12 bit	12 bit
Radiometric Range	-0.1 to 1.1 L _{max}	-0.1 to 1.1 L _{max}
Spectral Uniformity	>95%	>95%
Spatial Uniformity	>95%	>90%

Flash-Forward

- The Flora White Paper, submitted to the NAS committee responsible for creating the NASA Decadal Survey, increased pixel size to 45 meters, accommodating:
 - Higher SNR
 - Larger FOV
- The white paper was used by the NAS as the basis for the VSWIR portion of their proposed HyspIRI mission.
- The NASA HyspIRI Concept team, consistent with objectives as stated in the Decadal Survey, has further increased the pixel size to 60 meters allowing for exploitation of larger focal plane arrays to reduce the number of spectrometers, as well as providing:
 - Still higher SNR
 - Much larger FOV
 - More frequent re-visit time

