

## Level-2 Algorithm Status, Simulated Data, and Cloud Detection

Glynn Hulley, Robert Freepartner, Roel Rodriguez Jet Propulsion Laboratory, California Institute of Technology

Principal Investigator: Simon Hook, JPL Co-Investigators: Rick Allen, Univ. of Idaho; Martha Anderson, USDA Joshua Fisher, JPL; Andrew French, USDA Glynn Hulley, JPL; Eric Wood, Princeton Univ. Collaborators: Christopher Hain, Univ. Maryland

> (c) 2016 California Institute of Technology. Government sponsorship acknowledged. HyspIRI Science Workshop, Pasadena, CA, 18-20 October 2016

## Outline

- 1. Level-2 algorithm status
- 2. Products
- 3. Simulated data
- 4. Cloud detection evaluation

#### Iteratively solve for surface radiance + Temperature/Emissivity



### LST Uncertainty Analysis

| Hulley et al. 2012 (Uncertainty Analysis Study) |         |                        | LST Uncertainty (K) |            |
|-------------------------------------------------|---------|------------------------|---------------------|------------|
| Surface types                                   | Samples | MODTRAN<br>Simulations | <b>3-band TES</b>   | 5-band TES |
| Dense vegetation,<br>Water, Ice, Snow           | 8       | 660,096                | 2.19                | 1.63       |
| Rocks                                           | 48      | 3,960,576              | 1.44                | 1.45       |
| Soils                                           | 45      | 3,713,040              | 0.89                | 0.91       |
| Sands                                           | 10      | 825,120                | 1.12                | 0.99       |
| Total                                           | 111     | 9,158,832              | 1.49 K              | 1.13 K     |

L2 error contributions = algorithm + measurement + atmosphere

TES 5-band approach meets ~1 K accuracy capability for **ECOSTRESS** (Requirement is 2 K)

## Level-2 Flow Schematic



<u>Code:</u> C++ Unix system <u>End-to-end timing:</u> ~3.5 minutes for one ECOSTRESS granule (~25 million pixels) <u>Runconfig:</u> Multiple runtime options (cloud thresholds, atmospheric data, WVS model)

### **ECOSTRESS Level-2 TES Product**

| SDS        | Long Name                               | Units |
|------------|-----------------------------------------|-------|
| LST        | Land Surface Temperature                | К     |
| Emissivity | Emissivity<br>(bands 1 -5)              | n/a   |
| PWV        | Precipitable Water Vapor<br>(MERRA-2)   | cm    |
| QC         | Quality Control                         | n/a   |
| LSTerr     | LST Uncertainty                         | К     |
| Emis_err   | Emissivity Uncertainty<br>(bands 1 – 5) | n/a   |
| Emis_bb    | Broadband Emissivity                    | n/a   |

## L2 Algorithm Status

| LEVEL-2 TASK                                                                              | Completion            |
|-------------------------------------------------------------------------------------------|-----------------------|
| Simulate L1/L2 Products (VIIRS, ASTER)                                                    | <del>01-31-2016</del> |
| L2 Documentation (ATBD, PSD)                                                              | <del>02-23-2016</del> |
| L2 Code conversion to C++                                                                 | <del>07-22-2016</del> |
| Installation of necessary libraries, radiative transfer<br>models, Ancillary data (ASTER) | <del>07-25-2016</del> |
| Metadata, uncertainties, cloud mask, error logs                                           | 07-29-2016            |
| L2 code testing on simulated data                                                         | 08-15-2016            |
| Baseline L2 PGE with Process Control System (PCS)                                         | <del>09-30-2016</del> |
| Incorporate NCEP atmospheric data (backup for MERRA2), ECMWF?                             | Ongoing               |
| Implement Water Vapor Scaling (WVS) Model                                                 | Ongoing               |
| Documentation (Cloud ATBD, ASD's)                                                         | Ongoing               |
| Cloud Mask evaluation/refinement                                                          | Ongoing               |

### Spectral Response Functions (best estimate as of 8.25.2016)



12.09

0.610

- RTTOV coefficient files
- Uncertainty estimates

### Spectral Response Functions (best estimate as of 8.25.2016)



### Spectral Response Functions (best estimate as of 8.25.2016)



## **SO2** Detection



## **ECOSTRESS L2 Simulated Data**

- Simulate L2 products at native ECOSTRESS resolution (~400x400 km swath, 70 m)
- VIIRS (375m) and ASTER (100m) thermal data
- L2 Simulated Data Workshop, July 2016
- Uses:
  - Forward calculate observed radiances (L1B)
  - Test production algorithms, timings, memory usage
  - Early adopters, e.g. NASA DEVELOP, Earth Uni, Costa Rica, UC Davis





#### ECOSTRESS Land Surface Temperature [K]



#### Limitations:

- Disaggregation from 375m 70m
- ASTER 100 m -> 70m (loss of 'focus')
- Misregistration between ASTER/VIIRS TIR

#### ECOSTRESS Land Surface Temperature [K]



#### ECOSTRESS Emissivity Band 1 (8.3 $\mu$ m)



| Home NRC Decadal St<br>You are here: Home > Application                                                                                              | COSTRESS         urvey       News       Events       Science       Applications       Instrument       Mission       Documents       To         ons > NASA DEVELOP Project - Costa Rica Agriculture Summer 2016                                                                                                                                            | ols Links Team<br>NASA/JPL                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Navigation  Home  NRC Decadal Survey  News  Events                                                                                                   | NASA DEVELOP Project - Costa Rica Agriculture Summer<br>2016<br>Objective: To utilize simulated ECOSTRESS data products to estimate the changes in water stress in crops over<br>a daily cycle using the Priestly-Taylor-JPL model and to evaluate the utility of future ECOSTRESS data streams<br>for supporting agricultural water resources management. | Upcoming Events<br>2016 HyspIRI Science<br>and Applications<br>Workshop<br>Oct 18, 2016 - Oct 20,<br>2016 — Pasadena, CA<br>ECOSTRESS Science<br>and Applications Team |
| <ul> <li>Science</li> <li>Applications</li> <li>NASA DEVELOP<br/>Project - Costa<br/>Rica Agriculture<br/>Summer 2016</li> <li>Instrument</li> </ul> | Ent Propoleani Leboratory<br>Calibrate Institute of Technolo                                                                                                                                                                                                                                                                                               | Meeting<br>Dec 06, 2016 - Dec 07,<br>2016<br>Upcoming events                                                                                                           |
| <ul> <li>Mission</li> <li>Documents</li> <li>Tools</li> <li>Links</li> <li>Team</li> </ul>                                                           | Team: *Gregory Halverson, Mark Barker, Savannah Cooley, Steven Pestana (*indicates Team Lead)                                                                                                                                                                                                                                                              |                                                                                                                                                                        |

Mentors: Dr. Christine Lee, Dr. Joshua Fisher

Partners at EARTH University: Dr. Johan Perret, Jose Eduardo Villalobos Leandro, Karim Abdalla Bolanos, Carol Lucia Fuentes Fallas

ECOSTRESS L2 Land Surface Temperature Simulated Image – Costa Rica Generated by Steven Pestana



### ECOSTRESS Cloud Mask Evaluation Roel Rodriguez (Caltech, SURF)

- Evaluation over all conditions using MODIS
- Compare to MOD35 standard
- Identify issues
- Optimize thresholds
- Update ATBD

## ECOSTRESS cloud mask

- Based on MODIS cloud detection heritage
- <u>Group I:</u> Thick high clouds; (BT11, BT13.9, and BT6.7) BT11 = Brightness Temperature at 11 micron
- <u>Group II</u>: Thin clouds;
   (<u>BT11-BT12</u>, <u>BT8.6-BT11</u>, <u>BT11-BT3.9</u>, and <u>BT11-BT6.7</u>)
- <u>Group III</u>: Low clouds VSWIR reflectance tests (**r**<sub>\*</sub>)
- <u>Group IV</u>: High thin clouds;
   (r<sub>1.38</sub>, <u>BT11-BT12</u>, BT12-BT4, and BT13.7-BT13.9)

#### **ECOSTRESS cloud tests**

## Cloud Test 1

If BT11 > threshold (land, ocean, day, night)



**Figure 1.** MODIS visible image (left) and 11  $\mu$ m band brightness temperature (right) using MODIS data on 7 August 2004.

## Cloud Test 2

• Tri-spectral combination of 8.6, 11, and 12 micron bands suggested by *Ackerman et al.* (1990)



### Performance versus MODIS

False



## Cloud Mask Output

#### • 8-bit product

| Bits | Long Name       | Description                                             |
|------|-----------------|---------------------------------------------------------|
| 0    | Cloud mask flag | 0 = determined                                          |
|      |                 | 1 = not determined                                      |
| 1    | Cloud           | 0 = no                                                  |
|      |                 | 1 = yes                                                 |
| 2    | Cloud extended  | 0 = no                                                  |
|      |                 | 1 = yes                                                 |
| 3    | BTdiff test     | <sup>o</sup> = no Careful consideration of land surface |
|      |                 | <sup>1 = yes</sup> emissivity required                  |
| 4    | VSWIR test      | <sup>o</sup> = no Uncalibrated band – dynamic threshold |
|      | X               | <sup>1 = yes</sup> required per scene                   |
| 5    | BT11 test       | <sup>o</sup> = no May overestimate over most land       |
|      |                 | <sup>1 = yes</sup> surfaces                             |
| 6    | spare           |                                                         |
| 7    | spare           |                                                         |

 Table 3. 8 bit Level 2 Cloud Mask Product.

## Summary

- ECOSTRESS L2 Products:
  - Land Surface Temperature (LST)
  - Spectral Emissivity (5 bands)
  - Broadband Emissivity
  - Cloud Mask
- Well defined and strong algorithm heritage (ASTER/MODIS/VIIRS)
- L2 Code tested and baselined in SDS
- Simulated ECOSTRESS L2 Products
- Cloud mask evaluation and optimization

ECOSTRESS Simulated LST - 67m

330

325

320

315

310

305

300

295



- 1. Signatures of vegetation stress are manifested in the LST signal <u>before</u> any visible deterioration of vegetation cover occurs.
- 2. The surface moisture state can be <u>deduced directly</u> from the remotely sensed LST.

#### MASTER LST: 08/26/2014



#### Google Earth: 08/28/14



### **Theoretical Basis: Surface Temperature**

Radiometric ('Brightness') Temperature

$$T_{\lambda}(\theta) = B_{\lambda}^{-1}(L_{\lambda}(\theta))$$

Land Surface ('Skin') Temperature (LST)

$$T_{s} = B_{\lambda}^{-1} \left( \frac{L_{\lambda}(\theta) - \rho_{\lambda} L^{\downarrow}}{\varepsilon_{\lambda}} \right)$$

where:

 $B_{\lambda}$  = blackbody spectral radiance

 $\lambda$  = wavelength

 $T_s$  = Surface Temperature

 $T_{\lambda}(\theta)$  = Surface Brightness Temperature

 $\rho_{\lambda}$  = Surface Reflection

 $L^{\downarrow}$  = Downwelling Sky Irradiance

 $\varepsilon_{\lambda} = \text{Emissivity}$ 



**Planck Function** 

in the Planck function shifts to shorter and shorter wavelengths

### LST Disaggregation Approach (375 m ->70 m)

- Disaggregation procedure for radiometric surface temperature (DisTrad), Kustas et al. 2003
- Based on assumed relationship between vegetation 'greeness' and temperature





1.6 micron band used for geolocation (uncalibrated)

JPL Publication XX-XX

### →ECOSTRESS

#### ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station

Level-2 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document (ATBD)

# Aig The Doo

March 26, 2015

Glynn C. Hulley Co-Investigator Jet Propulsion Laboratory California Institute of Technology Simon J. Hook Principal Investigator Jet Propulsion Laboratory California Institute of Technology ECOSTRESS L-2 and Cloud Mask Algorithm Theoretical Basis Document (ATBD)

### Temperature Emissivity Separation (TES) Algorithm 'ASTER approach'

T-E separation is under-determined:

If have N measurements, always have N+1 unknowns:Radiance Band 1 = T + emissivity1Radiance Band 2 = T + emissivity2Radiance Band 3 = T + emissivity3Radiance Band 4 = T + emissivity4Radiance Band 5 = T + emissivity5





## Carbonate mapping

