Developing Methods for Fractional Cover Estimation Toward Global Mapping of Ecosystem Composition

D.A. Roberts¹, David R. Thompson², P. E. Dennison³, R.O. Green², & R. Pavlick²

¹) UCSB, Dept of Geography
²) Jet Propulsion Laboratory, California Institute of Technology
³) Univ. Utah, Dept of Geography

Copyright 2016
Project Goals

- To Develop a Standard Fractional Cover Product for AVIRIS-C, AVIRIS-NG and future Global Missions
 - Green (Photosynthetic) Vegetation
 - Canopy Interception, Latent/sensible Heat Flux, Plant production, Carbon balance
 - Non-photosynthetic Vegetation
 - Plant residues, Resistance to erosion, Carbon balance
 - Substrate (S)
 - Soil: Soil degradation, Erosion potential
 - Ash/char: Burn products, Fire severity
 - Impervious: Roof, Roads, Urban energy balance, Transportation and runoff
 - Snow
 - Snow covered area, Water resources
The Team

• **JPL: David Thompson, Robert Green, Ryan Pavlick, Natasha Stavros, Dave Schimel**
 – Code development, spectral library development and validation subset of products

• **UCSB: Dar Roberts, Zachary Tane**
 – Spectral library development, GV, NPV, Impervious surfaces, soils
 – Fraction Validation
 • Impervious surface and GV cover, urban areas
 • NPV fractions, Sierra Nevada

• **Univ. Utah Phil Dennison**
 – Spectral library development, GV, NPV, soils
 – Product Validation
 • Soils and NPV
Multiple Endmember Spectral Mixture Analysis (MESMA)

- Extension of Linear Spectral Mixture Analysis
- Allows the number and types of Endmembers to vary per pixel
 - Candidate models must meet fit and fraction constraints
- Models selected on minimum RMS
- Complexity level based on change in RMS
Why MESMA? Endmember Variability

- Endmember variability is a product:
 - Leaf level chemistry and anatomy (Asner)
 - Phenology
 - Architecture

Douglas-fir

Red Alder
Why MESMA? Dimensionality

How many Endmembers do you need?

Spectral Contrast: Ability to discriminate two or more materials based on significant spectral differences

Spectral Degeneracy: Inability to discriminate materials because they are either not spectrally distinct, or can be modeled as a combination of other endmembers
MESMA: The Good

• Urban Remote Sensing
 – Powell et al., 2007; Franke et al., 2009; Roberts et al., 2012; Demarchi et al., 2012; Okujeni et al., 2013; Fan and Deng, 2014
• Vegetation species, structure and disturbance
 – Dennison and Roberts, 2003a/b, Li et al., 2005; Sonnentag et al., 2007; Youngentob et al., 2011; Roth et al., 2012; Somers and Asner, 2013/2014; Antonrakis et al., 2014
• Wildfire, including Active Fires, Fuel Types, Fire Severity and Post-fire Recovery
 – Roberts et al., 2003; Dennison et al., 2006; Eckmann et al., 2008/2010; Veraverbeke et al., 2013; Quintano et al., 2013
• Arid Lands Remote Sensing
 – Okin et al., 2001; Ballantine et al., 2005; Thorp et al. 2013
• Snow-covered Area and Grain Size
 – Painter et al., 1998, 2003
• Coastal Marine/Kelp
 – Cavanaugh et al., 2011
• Environmental Damage by Mining
 – Fernandez-Manso et al., 2012
• Precision Agriculture
 – Tits et al., 2012
• Thermal Remote Sensing
 – Collins et al., 2001
An Example From Santa Barbara

a) Modified VIS Model; b) NPV-GV-Soil; c) Paved-Roof-Rock; c) Classification

GV & Impervious vs Household Income

Roberts et al., 2016
Fractions Scale

Roberts et al., 2012
MESMA: The Bad

• Requires a Comprehensive Spectral Library
 – Radiative Transfer: MEMSCAG
 – Reference Polygons: AVIRIS as a source
 – Field/laboratory Spectra: ASTER/USGS, Contributed

• Is Computationally Inefficient
 – Tries all possible combinations for all complexity levels

• Computationally Infeasible for Large Spectral Libraries
 – Endmembers in each category combine multiplicatively
 • 4 EM: 10 GV, 10, NPV, 10 Soil, 10 Impervious, 10 Ash = 7050 models

• Spectral Degeneracy
 – Endmembers that are distinct at 2 em, may have little impact on fractions at higher levels of complexity
MESMA: Reducing Complexity

- **Endmember Sub-selection**
 - Endmember Average RMS (EAR: Dennison and Roberts, 2003)
 - Minimum Average Spectral Angle (MASA: Dennison et al., 2004)
 - Count Based Endmember Selection (COB: Roberts et al., 2003)
 - Iterative Endmember Selection (IES: Roth et al., 2012)

\[
\text{EAR}_{A_i, B_j} = \frac{\sum_{j=1}^{n} \text{RMSE}_{A_i, B_j}}{n - 1}
\]

\[
\text{Min} \bar{\theta}_{A_i, B_j} = \frac{\sum_{j=1}^{n} \theta_{A_i, B_j}}{n - 1}
\]

- **Band Sub-selection**
 - Stable Zone Unmixing (Somers et al., 2010)
Global MESMA: The Challenge

• What Spectral Library will be Used?
 – Must be robust across multiple ecosystems/ecoregions
 – Must be robust across multiple years and seasons
 – Must include sufficient wavelengths (AVIRIS-C, AVIRIS-NG, ASD?)

• How will Spectral Libraries be Built?
 – Integrated from Existing Libraries
 • Soils/Rocks (ASTER, USGS)
 • Snow (Radiative Transfer: Painter et al.)
 • NPV, Daughtry, Roberts, Dennison other
 • Impervious: Herold et al., 2004
 • Ash/Char: Veravebeke et al., 2013
 – Reference Polygons
 • Compiled from multiple reference sets over source regions
 – Image Derived?
 • e.g. PCOMMEND, SPICE, Other

• How will Computational Efficiency be Improved?
 – Fraction Retrieval: Thompson and the JPL Team
 – Endmember Reduction: Thompson and the JPL Team

• How will fractions be validated?
 – Existing validation data sets (GV, NPV, Impervious, Ash)
 – Synthetic Mixtures (NPV & Soils)
Implementation

- Fully implemented in the JPL Science Data System
 - Optimized to exploit multi-core parallelism
 - Automated into AVIRIS-NG and AVIRIS-C science workflows

![Image of satellite data comparison](image-url)
Spectrum reconstruction error

Permits user-tunable confidence filters

AVIRIS-NG RGB Image Unmixing Result RMSE

NPV PV Substrate

0.0 0.15
Building Spectral Libraries: Image Sources

Roberts et al., 2015
Building Spectral Libraries: Field Sources

Field Spectra Collection
ASD Full-Range Spectrometer

Sample Concrete Spectra

Roberts and Herold, 2004
Fraction Validation Strategy

• **Existing high spatial resolution Fraction Reference sites**
 – Urban: Roberts et al., 2012/2016
 • DOQQ
 – Sierra Nevada Forest Mortality
 • WV2 (Tane)
 – Other
 • Snow covered area products
 • Validated burned products

• **Synthetic Mixtures**
 – NPV/Soil

Figure showing three validation polygons
A: 44% NPV, 11.3% GV, 44.7% Soil
B: 50.45%NPV, 1.5% GV, 48%Soil
C: 4.8% NPV, 57.4% GV, 34.5% Soil, 3.3% Imp
Fraction Validation: Numerical Simulations (Dennison)

- 619 field spectra from agricultural (Daughtry) and rangeland (Kokaly) sites
- Each spectrum has field-assessed GV, NPV, and soil fractional cover
- Field spectra were used to model HyspIRI spectra, including noise, at 10, 15, 20, and 30 nm band spacing and FWHM
- Preliminary results show moderate correlations between fractions modeled by MESMA and field-assessed fractional cover
 - More effort is needed to improve endmember selection
Fraction Validation: Thompson Code

- Dennison simulated reflectance
- Indicates accuracy “sweet spot” at 10 Soil, NPV endmembers
- Spectral resolution to 30 nm is tolerable and may be preferable!
Summary

• Proposed development of a standard MESMA product from AVIRIS, AVIRIS-NG

• Requires comprehensive spectral libraries
 – Differing strategies are required for different materials
 – Will utilize different sources

• Will include extensive, targeted validation

• Key to success is identifying the minimum number of endmembers required to generate the highest accuracy
 – Reduces unnecessary run times
 – We need spectra that capture the variability for each category and no more