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Project Goals 
•  To Develop a Standard Fractional Cover Product 

for AVIRIS-C, AVIRIS-NG and future Global 
Missions 
–  Green (Photosynthetic) Vegetation  

•  Canopy Interception, Latent/sensible Heat Flux, 
Plant production, Carbon balance 

–  Non-photosynthetic Vegetation 
•  Plant residues, Resistance to erosion, Carbon balance 

–  Substrate (S) 
•  Soil: Soil degradation, Erosion potential 
•  Ash/char: Burn products, Fire severity 
•  Impervious: Roof, Roads, Urban energy balance, 

Transportation and runoff 
–  Snow 

•  Snow covered area, Water resources 
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The Team 
•  JPL: David Thompson, Robert Green, Ryan 

Pavlick, Natasha Stavros, Dave Schimel 
–  Code development, spectral library development and 

validation subset of products 
•  UCSB: Dar Roberts, Zachary Tane 

–  Spectral library development, GV, NPV, Impervious 
surfaces, soils 

–  Fraction Validation 
•  Impervious surface and GV cover, urban areas 
•  NPV fractions, Sierra Nevada 

•  Univ. Utah Phil Dennison 
–  Spectral library development, GV, NPV, soils 
–  Product Validation 

•  Soils and NPV 
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Complexity: 3,2,1 RGB 

Class (from model #) 

Composition: NPV-GV-Soil 
RGB 

Multiple Endmember Spectral 
Mixture Analysis (MESMA) 

•  Extension of Linear Spectral Mixture Analysis 
•  Allows the number and types of Endmembers to 

vary per pixel 
–  Candidate models must meet fit and fraction constraints 

•  Models selected on minimum RMS 
•  Complexity level based on change in RMS 4	



Why MESMA? Endmember Variability 
•  Endmember 

variability is a 
product: 
–  Leaf level 

chemistry and 
anatomy (Asner) 

–  Phenology 
–  Architecture 

Douglas-fir 

Red Alder 5	



Why MESMA? Dimensionality 

How many Endmembers do you need? 
Spectral Contrast: Ability to discriminate two or more materials based on significant 
spectral differences 
Spectral Degeneracy: In ability to discriminate materials because they are either not 
spectrally distinct, or can be modeled as a combination of other endmembers 6	



MESMA: The Good 
•  Urban Remote Sensing 

–  Powell et al., 2007; Franke et al., 2009; Roberts et al., 2012; Demarchi et al., 2012; Okujeni et 
al., 2013; Fan and Deng, 2014 

•  Vegetation species, structure and disturbance 
–  Dennison and Roberts, 2003a/b, Li et al., 2005; Sonnentag et al., 2007; Youngentob et al., 

2011;  Roth et al., 2012; Somers and Asner, 2013/2014; Antonrakis et al., 2014 
•  Wildfire, including Active Fires, Fuel Types, Fire Severity and Post-fire Recovery 

–  Roberts et al., 2003; Dennison et al., 2006; Eckmann et al., 2008/2010; Veraverbeke et al., 
2013; Quintano et al., 2013 

•  Arid Lands Remote Sensing 
–  Okin et al., 2001; Ballantine et al., 2005; Thorp et al. 2013 

•  Snow-covered Area and Grain Size 
–  Painter et al., 1998, 2003 

•  Coastal Marine/Kelp 
–  Cavanaugh et al., 2011 

•  Environmental Damage by Mining 
–  Fernandez-Manso et al., 2012  

•  Precision Agriculture 
–  Tits et al., 2012 

•  Thermal Remote Sensing 
–  Collins et al., 2001 
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An Example From Santa Barbara 

a)   Modified VIS Model; b) NPV-GV-Soil 
c)   Paved-Roof- Rock; c) Classification 

GV & Impervious vs Household Income 

Roberts et al., 2016 
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Roberts et al., 2012 

Fractions Scale 
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MESMA: The Bad 
•  Requires a Comprehensive Spectral Library 

–  Radiative Transfer: MEMSCAG 
–  Reference Polygons: AVIRIS as a source 
–  Field/laboratory Spectra: ASTER/USGS, Contributed 

•  Is Computationally Inefficient 
–  Tries all possible combinations for all complexity levels 

•  Computationally Infeasible for Large Spectral Libraries 
–  Endmembers in each category combine multiplicatively 

•  4 EM: 10 GV, 10, NPV, 10 Soil, 10 Impervious, 10 Ash = 7050 models 

•  Spectral Degeneracy 
–  Endmembers that are distinct at 2 em, may have little impact on 

fractions at higher levels of complexity 
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MESMA: Reducing Complexity 
•  Endmember Sub-selection 

–  Endmember Average RMS (EAR: Dennison and Roberts, 2003) 

–  Minimum Average Spectral Angle (MASA: Dennison et al., 2004) 

–  Count Based Endmember Selection (COB: Roberts et al., 2003) 
–  Iterative Endmember Selection (IES: Roth et al., 2012) 

•  Band Sub-selection 
–  Stable Zone Unmixing (Somers et al., 2010) 
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Global MESMA: The Challenge 
•  What Spectral Library will be Used? 

–  Must be robust across multiple ecosystems/ecoregions 
–  Must be robust across multiple years and seasons 
–  Must include sufficient wavelengths (AVIRIS-C, AVIRIS-NG, ASD?) 

•  How will Spectral Libraries be Built? 
–  Integrated from Existing Libraries 

•  Soils/Rocks (ASTER, USGS) 
•  Snow (Radiative Transfer: Painter et al.) 
•  NPV, Daughtry, Roberts, Dennison other 
•  Impervious: Herold et al., 2004 
•  Ash/Char: Veravebeke et al., 2013 

–  Reference Polygons 
•  Compiled from multiple reference sets over source regions 

–  Image Derived?   
•  e.g. PCOMMEND, SPICE, Other 

•  How will Computational Efficiency be Improved? 
–  Fraction Retrieval: Thompson and the JPL Team 
–  Endmember Reduction: Thompson and the JPL Team 

•  How will fractions be validated? 
–  Existing validation data sets (GV, NPV, Impervious, Ash) 
–  Synthetic Mixtures (NPV & Soils) 
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Implementation 
•  Fully implemented in the JPL Science Data System  

–  Optimized to exploit multi-core parallelism 
–  Automated into AVIRIS-NG and AVIRIS-C science workflows 
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Permits user-tunable confidence filters 

Spectrum reconstruction error 

AVIRIS-NG RGB Image Unmixing Result  RMSE 

0..0	 0.15	NPV							PV					Substrate	



Building Spectral Libraries: Image Sources 

Roberts et al., 2015 
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Sample Concrete Spectra
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Building Spectral Libraries: Field Sources 
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Fraction Validation Strategy 

•  Existing high spatial 
resolution Fraction 
Reference sites 
–  Urban: Roberts et al., 

2012/2016 
•  DOQQ 

–  Sierra Nevada Forest Mortality 
•  WV2 (Tane) 

–  Other 
•  Snow covered area 

products 
•  Validated burned products 

•  Synthetic Mixtures 
–  NPV/Soil Figure showing three validation polygons 

A: 44% NPV, 11.3% GV, 44.7% Soil 
B: 50.45%NPV, 1.5% GV, 48%Soil 
C: 4.8% NPV, 57.4% GV, 34.5% Soil, 3.3% Imp 
 

A 
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Fraction Validation: Numerical 
Simulations (Dennison) 

•  619 field spectra from agricultural 
(Daughtry) and rangeland (Kokaly) sites 

•  Each spectrum has field-assessed GV, NPV, 
and soil fractional cover 

•  Field spectra were used to model HyspIRI 
spectra, including noise, at 10, 15, 20, and 30 
nm band spacing and FWHM 

•  Preliminary results show moderate 
correlations between fractions modeled by 
MESMA and field-assessed fractional cover 
–  More effort is needed to improve endmember 

selection 
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Fraction Validation: Thompson Code 
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•  Dennison simulated reflectance 
•  Indicates accuracy “sweet spot” at 10 Soil, NPV endmembers 
•  Spectral resolution to 30 nm is tolerable and may be preferable! 
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Summary 
•  Proposed development of a standard MESMA 

product from AVIRIS, AVIRIS-NG 
•  Requires comprehensive spectral libraries 
–  Differing strategies are required for different materials 
–  Will utilize different sources 

•  Will include extensive, targeted validation 
•  Key to success is identifying the minimum number of 

endmembers required to generate the highest 
accuracy 
– Reduces unnecessary run times 
– We need spectra that capture the variability for 

each category and no more 20	


