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Agenda!
1.  Review HyspIRI prototype data products "
2.  Motivation and foundations for 

uncertainty quantification"
3.  A simple example using L2 and L3 

analyses"
4.  Initial conclusions and ideas for future 

investigation"
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A Growing Operational 
Data Catalog!
Calibrated Radiances"
2013 - Surface Reflectances"
2014 - Liquid, Ice, Vapor H2O "
2015 - CH4 Point Sources "
2016 - Benthic Reflectances"
2016 - Terrestrial Coverage 
Fractions (NPV/PV/S) "
2016 - Benthic Classification 
Maps"
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CH4	enhancement		
[Frankenberg	et	al.,	PNAS	2016]	

H2O	Ice,	Vapor,	Liquid	
[Thompson	et	al.,	RSE	2015]	
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L3 geophysical variables !
(mixing fractions, e.g.)!

L0!

L1!

L2!

L3!

HyspIRI 
prototype 
analysis!
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L3 geophysical variables !
(mixing fractions, e.g.)!

L0!

L1!

L2!

L3!

Laboratory 
Calibration Data!

Atmospheric 
models!

Retrieved 
atmospheric state!

Numerical 
approximations, 

decoupling!

Surface BRDF 
models!

Reflectance 
libraries!

Numerical 
approximations 
(linear mixing)!

HyspIRI 
prototype 
analysis!



Notable previous studies in 
uncertainty quantification!
•  Optimal Estimation [Rogers 2002]"

•  Uncertainty quantification and propagation 
for OCO-2 and other instruments [Hobbs, 
Braverman, et al., 2014]"

•  Comprehensive instrument, measurement 
& retrieval modeling of CRISM [Parente et al., 2010]"

•  Data-driven noise estimation [e.g. Meola et al., 2011]"
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Our Questions!
1.  Statistical modeling: What is the true 

uncertainty in product inputs and outputs? "
2.  Data system design: How should we 

summarize uncertainty and communicate it 
across product levels? "

3.  Retrieval algorithms: How can uncertainty 
propagation improve downstream analyses?"

4.  Performance: What are the potential 
accuracy benefits?"
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Measurements are statistical objects!

Point estimate of geophysical variable 𝞱 
given measurement x "
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Measurements are statistical objects!

Point estimate of geophysical variable 𝞱 
given measurement x "

"
!

Maximum A Posteriori estimate"
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Measurements are statistical objects!

Point estimate of geophysical variable 𝞱 
given measurement x "

"
!

Maximum A Posteriori estimate"
"
"

Full or Constrained Gaussian !
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Measurements are statistical objects!

Point estimate of geophysical variable 𝞱 
given measurement x "

"
!

Maximum A Posteriori estimate"
"
"

Full or Constrained Gaussian !
"
"

Full Posterior Distribution !
(not necessarily Gaussian) !
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Retrieval	of	geophysical	quan;;es	

L2	file	

of voltage signals at the spectrometer detector, comprising many sequential steps of multivariate
analysis with their own uncertainties and assumptions.

The ability to holistically model and track key error properties such as covariance, multi-
modality and non-Gaussianity through the retrievals can significantly improve these analyses
information value [2]. Errors in calibration are already meticulously tracked and controlled, but
the science questions of greatest interest in any given year typically lie at the measurement limits
of available sensors. Instrument e↵ects like stray light can be di�cult to measure in the labo-
ratory. Later stages of analysis introduce computational approximations and more assumptions
due to limited knowledge of confounding processes in the atmospheric and surface environment.
Such processes range from atmospheric scattering, to surface Bidirectional Reflectance Distribu-
tions, to water column optics and surface e↵ects influencing benthic retrieval algorithms. Proper
error reporting across analysis levels (often represented by di↵erent individuals and institutions)
requires understanding the coupling between these levels and the actual uncertainties at each
stage. Here first-principles models are invaluable and there is also no substitute for statistical
analysis with field data. This presentation will provide a presentation of preliminary results, and
begin the discussion of how uncertainty can best be represented in future data products and in-
corporated into Earth science analyses to fully exploit the information value of global imaging
spectroscopy.

This analysis is intrinsically statistical and probabilistic in nature. To date, probabilistic
models have been used in a range of spectroscopy retrieval applications. Arguably they have
progressed farthest in the context of atmospheric sounding due to a predominance of underde-
termined inverse problems for which stable solutions demand significant prior information and
covariance structure. Operational optimal estimation methods [2] use Gaussian prior and co-
variance structure, and incorporate linearized forward models in operational retrievals for NASA
missions including AIRS and OCO-2 [? ]. Bayesian retrieval approaches incorporating priors on
atmospheric information have been suggested for ocean remote sensing, as a means to resolve the
intrinsic indeterminacy between aerosols and ocean color properties [? ]. However, to date most
imaging spectroscopy treats levels of analysis as distinct, without common standards for passing
error and probability information between levels. This is convenient for modular development
by di↵erent teams of experts, but limits the potential for interpretation of errors, and ultimately
the accuracy of downsteam analysis.

This article provides an example of a straightforward method for error tracking and
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Atmospheric	correc;on	

L1	file	

Radiometry	
Probability	distribu;ons	encapsulated	in	products	
allow	tractable	and	exact	L3	posterior	distribu;ons.	
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Conditional independence permits 
efficient factorization!

of voltage signals at the spectrometer detector, comprising many sequential steps of multivariate
analysis with their own uncertainties and assumptions.

The ability to holistically model and track key error properties such as covariance, multi-
modality and non-Gaussianity through the retrievals can significantly improve these analyses
information value [2]. Errors in calibration are already meticulously tracked and controlled, but
the science questions of greatest interest in any given year typically lie at the measurement limits
of available sensors. Instrument e↵ects like stray light can be di�cult to measure in the labo-
ratory. Later stages of analysis introduce computational approximations and more assumptions
due to limited knowledge of confounding processes in the atmospheric and surface environment.
Such processes range from atmospheric scattering, to surface Bidirectional Reflectance Distribu-
tions, to water column optics and surface e↵ects influencing benthic retrieval algorithms. Proper
error reporting across analysis levels (often represented by di↵erent individuals and institutions)
requires understanding the coupling between these levels and the actual uncertainties at each
stage. Here first-principles models are invaluable and there is also no substitute for statistical
analysis with field data. This presentation will provide a presentation of preliminary results, and
begin the discussion of how uncertainty can best be represented in future data products and in-
corporated into Earth science analyses to fully exploit the information value of global imaging
spectroscopy.

This analysis is intrinsically statistical and probabilistic in nature. To date, probabilistic
models have been used in a range of spectroscopy retrieval applications. Arguably they have
progressed farthest in the context of atmospheric sounding due to a predominance of underde-
termined inverse problems for which stable solutions demand significant prior information and
covariance structure. Operational optimal estimation methods [2] use Gaussian prior and co-
variance structure, and incorporate linearized forward models in operational retrievals for NASA
missions including AIRS and OCO-2 [? ]. Bayesian retrieval approaches incorporating priors on
atmospheric information have been suggested for ocean remote sensing, as a means to resolve the
intrinsic indeterminacy between aerosols and ocean color properties [? ]. However, to date most
imaging spectroscopy treats levels of analysis as distinct, without common standards for passing
error and probability information between levels. This is convenient for modular development
by di↵erent teams of experts, but limits the potential for interpretation of errors, and ultimately
the accuracy of downsteam analysis.

This article provides an example of a straightforward method for error tracking and
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of voltage signals at the spectrometer detector, comprising many sequential steps of multivariate
analysis with their own uncertainties and assumptions.

The ability to holistically model and track key error properties such as covariance, multi-
modality and non-Gaussianity through the retrievals can significantly improve these analyses
information value [2]. Errors in calibration are already meticulously tracked and controlled, but
the science questions of greatest interest in any given year typically lie at the measurement limits
of available sensors. Instrument e↵ects like stray light can be di�cult to measure in the labo-
ratory. Later stages of analysis introduce computational approximations and more assumptions
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error reporting across analysis levels (often represented by di↵erent individuals and institutions)
requires understanding the coupling between these levels and the actual uncertainties at each
stage. Here first-principles models are invaluable and there is also no substitute for statistical
analysis with field data. This presentation will provide a presentation of preliminary results, and
begin the discussion of how uncertainty can best be represented in future data products and in-
corporated into Earth science analyses to fully exploit the information value of global imaging
spectroscopy.

This analysis is intrinsically statistical and probabilistic in nature. To date, probabilistic
models have been used in a range of spectroscopy retrieval applications. Arguably they have
progressed farthest in the context of atmospheric sounding due to a predominance of underde-
termined inverse problems for which stable solutions demand significant prior information and
covariance structure. Operational optimal estimation methods [2] use Gaussian prior and co-
variance structure, and incorporate linearized forward models in operational retrievals for NASA
missions including AIRS and OCO-2 [? ]. Bayesian retrieval approaches incorporating priors on
atmospheric information have been suggested for ocean remote sensing, as a means to resolve the
intrinsic indeterminacy between aerosols and ocean color properties [? ]. However, to date most
imaging spectroscopy treats levels of analysis as distinct, without common standards for passing
error and probability information between levels. This is convenient for modular development
by di↵erent teams of experts, but limits the potential for interpretation of errors, and ultimately
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A simple example: Reporting L2 
reflectance uncertainty to L3 unmixing!
Simulated	retrievals		
1.  L1	with	added	noise	simula;ng	HyspIRI	[Dennison	et	al.]	

and	Lorentzian	PSF	tails	
2.  L2	using	RTM	model	of	variable	atmospheric	condi;ons	
3.  L3	based	on	nonnega;ve	least	squares	of	P,	NPV,	GV	

endmembers	
	
Compare	three	alterna5ve	unmixing	methods	using:	
1.  No	error	es;mate	(point	mass	probabili;es)	
2.  Mul;variate	Gaussians,	diagonal	covariance	
3.  Mul;variate	Gaussian	distribu;ons,	full	covariance	
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Adapting least-squares estimation 
for correlated input uncertainties!
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Standard	least	squares	ficng	error	

Mahalanobis	distance	–	weight	by	inverse	of	error	distribu;on	

𝑒𝑟𝑟(𝑥,𝜃)=  1/𝑛 ∑𝜆↑▒( 𝑥 −𝑥)↑2   	

█𝑒𝑟𝑟(𝑥,𝜃)= 1/𝑛 ∑𝜆↑▒((𝑥  −𝑥)−𝜇)  ↑𝑇  𝐶↑−1 ((𝑥  −𝑥) 
−𝜇)@                  1/𝑛 ∑𝜆↑▒[((𝑥  −𝜇) 𝐶↑−1/2 −(𝑥−𝜇) 𝐶↑
−1/2 )]↑2    	

Amounts	to	a	whitening	pre-transforma5on	of	both	libraries	and	
measured	reflectance.	
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Errors in reflectance (eigenvectors) and 
correlations with errors in atmospheric state!

EOF	#1	

EOF	#2	

EOF	#3	
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Error covariance matrix: rs!
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H2O	vapor	
residuals	
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Answers to initial questions!
1.  Statistical modeling: What is the true uncertainty in product 

inputs and outputs? Significant correlations can exist 
across channels"

2.  Data system design: How should we summarize 
uncertainty and communicate it across product levels? Full 
covariances may outperform channelwise error reporting"

3.  Retrieval algorithms: How can uncertainty propagation 
improve downstream analyses? Simple data pre-
transformations for many existing least-squares algorithms"

4.  Performance: What are the potential accuracy benefits? 
Potentially significant, even for simple idealized cases"
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Thanks!!
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•  NASA Earth Science Division and HyspIRI 
preparatory campaign"

•  The AVIRIS-C and AVIRIS-NG flight teams, 
including Sarah Lundeen, Ian McCubbin, and 
Charles Sarture. . "

"
AVIRIS-C data is available from 
http://aviris.jpl.nasa.gov"
AVIRIS-NG data is available from 
http://avirisng.jpl.nasa.gov"
"
"
"
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Is estimating posterior 
uncertainty even tractable? !
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of voltage signals at the spectrometer detector, comprising many sequential steps of multivariate
analysis with their own uncertainties and assumptions.

The ability to holistically model and track key error properties such as covariance, multi-
modality and non-Gaussianity through the retrievals can significantly improve these analyses
information value [2]. Errors in calibration are already meticulously tracked and controlled, but
the science questions of greatest interest in any given year typically lie at the measurement limits
of available sensors. Instrument e↵ects like stray light can be di�cult to measure in the labo-
ratory. Later stages of analysis introduce computational approximations and more assumptions
due to limited knowledge of confounding processes in the atmospheric and surface environment.
Such processes range from atmospheric scattering, to surface Bidirectional Reflectance Distribu-
tions, to water column optics and surface e↵ects influencing benthic retrieval algorithms. Proper
error reporting across analysis levels (often represented by di↵erent individuals and institutions)
requires understanding the coupling between these levels and the actual uncertainties at each
stage. Here first-principles models are invaluable and there is also no substitute for statistical
analysis with field data. This presentation will provide a presentation of preliminary results, and
begin the discussion of how uncertainty can best be represented in future data products and in-
corporated into Earth science analyses to fully exploit the information value of global imaging
spectroscopy.

This analysis is intrinsically statistical and probabilistic in nature. To date, probabilistic
models have been used in a range of spectroscopy retrieval applications. Arguably they have
progressed farthest in the context of atmospheric sounding due to a predominance of underde-
termined inverse problems for which stable solutions demand significant prior information and
covariance structure. Operational optimal estimation methods [2] use Gaussian prior and co-
variance structure, and incorporate linearized forward models in operational retrievals for NASA
missions including AIRS and OCO-2 [? ]. Bayesian retrieval approaches incorporating priors on
atmospheric information have been suggested for ocean remote sensing, as a means to resolve the
intrinsic indeterminacy between aerosols and ocean color properties [? ]. However, to date most
imaging spectroscopy treats levels of analysis as distinct, without common standards for passing
error and probability information between levels. This is convenient for modular development
by di↵erent teams of experts, but limits the potential for interpretation of errors, and ultimately
the accuracy of downsteam analysis.

This article provides an example of a straightforward method for error tracking and
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Is estimating posterior 
uncertainty even tractable? !
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of voltage signals at the spectrometer detector, comprising many sequential steps of multivariate
analysis with their own uncertainties and assumptions.

The ability to holistically model and track key error properties such as covariance, multi-
modality and non-Gaussianity through the retrievals can significantly improve these analyses
information value [2]. Errors in calibration are already meticulously tracked and controlled, but
the science questions of greatest interest in any given year typically lie at the measurement limits
of available sensors. Instrument e↵ects like stray light can be di�cult to measure in the labo-
ratory. Later stages of analysis introduce computational approximations and more assumptions
due to limited knowledge of confounding processes in the atmospheric and surface environment.
Such processes range from atmospheric scattering, to surface Bidirectional Reflectance Distribu-
tions, to water column optics and surface e↵ects influencing benthic retrieval algorithms. Proper
error reporting across analysis levels (often represented by di↵erent individuals and institutions)
requires understanding the coupling between these levels and the actual uncertainties at each
stage. Here first-principles models are invaluable and there is also no substitute for statistical
analysis with field data. This presentation will provide a presentation of preliminary results, and
begin the discussion of how uncertainty can best be represented in future data products and in-
corporated into Earth science analyses to fully exploit the information value of global imaging
spectroscopy.

This analysis is intrinsically statistical and probabilistic in nature. To date, probabilistic
models have been used in a range of spectroscopy retrieval applications. Arguably they have
progressed farthest in the context of atmospheric sounding due to a predominance of underde-
termined inverse problems for which stable solutions demand significant prior information and
covariance structure. Operational optimal estimation methods [2] use Gaussian prior and co-
variance structure, and incorporate linearized forward models in operational retrievals for NASA
missions including AIRS and OCO-2 [? ]. Bayesian retrieval approaches incorporating priors on
atmospheric information have been suggested for ocean remote sensing, as a means to resolve the
intrinsic indeterminacy between aerosols and ocean color properties [? ]. However, to date most
imaging spectroscopy treats levels of analysis as distinct, without common standards for passing
error and probability information between levels. This is convenient for modular development
by di↵erent teams of experts, but limits the potential for interpretation of errors, and ultimately
the accuracy of downsteam analysis.

This article provides an example of a straightforward method for error tracking and
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of voltage signals at the spectrometer detector, comprising many sequential steps of multivariate
analysis with their own uncertainties and assumptions.

The ability to holistically model and track key error properties such as covariance, multi-
modality and non-Gaussianity through the retrievals can significantly improve these analyses
information value [2]. Errors in calibration are already meticulously tracked and controlled, but
the science questions of greatest interest in any given year typically lie at the measurement limits
of available sensors. Instrument e↵ects like stray light can be di�cult to measure in the labo-
ratory. Later stages of analysis introduce computational approximations and more assumptions
due to limited knowledge of confounding processes in the atmospheric and surface environment.
Such processes range from atmospheric scattering, to surface Bidirectional Reflectance Distribu-
tions, to water column optics and surface e↵ects influencing benthic retrieval algorithms. Proper
error reporting across analysis levels (often represented by di↵erent individuals and institutions)
requires understanding the coupling between these levels and the actual uncertainties at each
stage. Here first-principles models are invaluable and there is also no substitute for statistical
analysis with field data. This presentation will provide a presentation of preliminary results, and
begin the discussion of how uncertainty can best be represented in future data products and in-
corporated into Earth science analyses to fully exploit the information value of global imaging
spectroscopy.

This analysis is intrinsically statistical and probabilistic in nature. To date, probabilistic
models have been used in a range of spectroscopy retrieval applications. Arguably they have
progressed farthest in the context of atmospheric sounding due to a predominance of underde-
termined inverse problems for which stable solutions demand significant prior information and
covariance structure. Operational optimal estimation methods [2] use Gaussian prior and co-
variance structure, and incorporate linearized forward models in operational retrievals for NASA
missions including AIRS and OCO-2 [? ]. Bayesian retrieval approaches incorporating priors on
atmospheric information have been suggested for ocean remote sensing, as a means to resolve the
intrinsic indeterminacy between aerosols and ocean color properties [? ]. However, to date most
imaging spectroscopy treats levels of analysis as distinct, without common standards for passing
error and probability information between levels. This is convenient for modular development
by di↵erent teams of experts, but limits the potential for interpretation of errors, and ultimately
the accuracy of downsteam analysis.

This article provides an example of a straightforward method for error tracking and
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Error covariance matrix: 𝝆toa!

3/14/17	 HyspIRI	Workshop,	Oct	2016	 24	

Ch
an
ne

l	

Channel	



Example state vector!
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Parameter	 Degrees	of	Freedom	 True	Distribu5on	

Radiometric	gain	 1	 Gaussian	

Radiometric	offset	 1	 Gaussian	

Spectral	FWHM	 1	 Gaussian	

Lorentzian	PSF	frac;on	 1	 Gaussian	

Aerosol	Op;cal	Depth	 1	 Exponen;al	

Water	vapor	 1	 Exponen;al	

Cons;tuents	 ~3	 Mul;nomial	discrete	

Mixing	Frac;ons	 ~2	 Dirichlet	

Total	for	P(L3	|	L0,	L2,	L3)	 15	 Fully	connected	graph?	


