

Optimal Estimation for Earth Science Imaging Spectroscopy with Multivariate Uncertainty Analysis

David R. Thompson, Robert O. Green, Joseph Boardman¹, Philip Dennison², Michael Eastwood, Mark Helmlinger Jet Propulsion Laboratory, California Institute of Technology ¹Analytical Imaging and Geophysics, LLC ²University of Utah

Copyright 2016. All Rights Reserved. This research has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NASA programmatic support through ESTO and Terrestrial Ecology programs is gratefully acknowledged.

Agenda

- 1. Review HyspIRI prototype data products
- 2. Motivation and foundations for uncertainty quantification
- 3. A simple example using L2 and L3 analyses
- 4. Initial conclusions and ideas for future investigation

A Growing Operational Data Catalog

Calibrated Radiances **2013 -** Surface Reflectances **2014 -** Liquid, Ice, Vapor H₂O **2015 -** CH₄ Point Sources **2016 - Benthic Reflectances 2016 - Terrestrial Coverage** Fractions (NPV/PV/S) 2016 - Benthic Classification Maps

H₂O Ice, Vapor, Liquid [Thompson et al., RSE 2015]

CH₄ enhancement [Frankenberg et al., PNAS 2016]

HyspIRI prototype analysis

Notable previous studies in uncertainty quantification

- Optimal Estimation [Rogers 2002]
- Uncertainty quantification and propagation for OCO-2 and other instruments [Hobbs, Braverman, et al., 2014]
- Comprehensive instrument, measurement & retrieval modeling of CRISM [Parente et al., 2010]
- Data-driven noise estimation [e.g. Meola et al., 2011]

Our Questions

- **1. Statistical modeling:** What is the true uncertainty in product inputs and outputs?
- 2. Data system design: How should we summarize uncertainty and communicate it across product levels?
- **3. Retrieval algorithms:** How can uncertainty propagation improve downstream analyses?
- **4. Performance:** What are the potential accuracy benefits?

Conditional independence permits efficient factorization

Probability distributions encapsulated in products allow *tractable* and *exact* L3 posterior distributions.

 $P(r_{s} \mid D) = \int_{L} P(r_{s} \mid L) \frac{P(L \mid D)}{L^{1 \text{ file}}} dL$ Atmospheric correction

 $P(L \mid D)$

Radiometry

$$P(m \mid D) = \int_{r_s} P(m \mid r_s) \begin{array}{c} P(r_s \mid D) \\ L2 \text{ file} \end{array} dr_s$$

Retrieval of geophysical quantities

A simple example: Reporting L2 reflectance uncertainty to L3 unmixing

Simulated retrievals

- 1. L1 with added noise simulating HyspIRI [Dennison et al.] and Lorentzian PSF tails
- 2. L2 using RTM model of variable atmospheric conditions
- 3. L3 based on nonnegative least squares of P, NPV, GV endmembers

Compare three alternative unmixing methods using:

- 1. No error estimate (point mass probabilities)
- 2. Multivariate Gaussians, diagonal covariance
- 3. Multivariate Gaussian distributions, full covariance

Adapting least-squares estimation for correlated input uncertainties

Standard least squares fitting error

 $err(x,\theta) = 1/n \sum \lambda \hat{1} (x-x) \hat{1} 2$

Mahalanobis distance – weight by inverse of error distribution

$$\begin{array}{c} \blacksquare err(x,\theta) = 1/n \sum \lambda \uparrow \blacksquare ((x - x) - \mu) \uparrow T \ C \uparrow -1 ((x - x) - \mu) @ \\ 1/n \sum \lambda \uparrow \blacksquare [((x - \mu)C \uparrow -1/2 - (x - \mu)C \uparrow -1/2] \uparrow 2 \end{array}$$

Amounts to a whitening pre-transformation of both libraries and measured reflectance.

Errors in reflectance (eigenvectors) and correlations with errors in atmospheric state

Error covariance matrix: r_s

Impact of uncertainty propagation, Case 1: Perfect radiances

3/14/17

Impact of uncertainty propagation, Case 2: Some radiance errors

Answers to initial questions

- 1. Statistical modeling: What is the true uncertainty in product inputs and outputs? Significant correlations can exist across channels
- 2. Data system design: How should we summarize uncertainty and communicate it across product levels? Full covariances may outperform channelwise error reporting
- 3. Retrieval algorithms: How can uncertainty propagation improve downstream analyses? Simple data pretransformations for many existing least-squares algorithms
- 4. Performance: What are the potential accuracy benefits? Potentially significant, even for simple idealized cases

Thanks!

- NASA Earth Science Division and HyspIRI preparatory campaign
- The AVIRIS-C and AVIRIS-NG flight teams, including Sarah Lundeen, Ian McCubbin, and Charles Sarture. .

AVIRIS-C data is available from http://aviris.jpl.nasa.gov

AVIRIS-NG data is available from http://avirisng.jpl.nasa.gov

Jet Propulsion Laboratory California Institute of Technology

Backup slides

Is estimating posterior uncertainty even tractable?

$$P(\substack{\bullet}{m \mid D) = \int_{r_s} \int_{L} P(m, r_s, L \mid D) dr_s dL$$
raw
reflectance

Is estimating posterior uncertainty even tractable?

Error covariance matrix: ρ_{toa}

Example state vector

Parameter	Degrees of Freedom	True Distribution
Radiometric gain	1	Gaussian
Radiometric offset	1	Gaussian
Spectral FWHM	1	Gaussian
Lorentzian PSF fraction	1	Gaussian
Aerosol Optical Depth	1	Exponential
Water vapor	1	Exponential
Constituents	~3	Multinomial discrete
Mixing Fractions	~2	Dirichlet
Total for $P(L_3 L_{0,} L_{2,} L_3)$	15	Fully connected graph?

