

Estimating Leaf Area Index in Shrublands With Imaging Spectroscopy: Statistical and Physical Models

Hamid Dashti, Nayani Ilangakoon, Nancy Glenn, Jessica Mitchell, Susan Ustin, Lucas Spaete, Megan Maloney, Yi Qi NASA TE NNX14AD81G

Dryland ecosystems

- Change in the structure and function of dryland vegetation communities and their positive/negative feedbacks on ecosystem state is complex and poorly understood.
 - Cross-scale interactions nonlinear & spatially heterogeneous
- SO 3336 wildfire prevention, suppression, long term restoration (i.e. \$56M for Soda Fire)

Soda fire 2015, ~ 280,000 acres

Non native cheatgrass competing with native sagebrush

Greening

- Significant greening of the extratropical latitudes has been documented through satellite observations of LAI (1982-2011).
 - Spatial scale: 1km resampled to 1/12 degree, RMSE 0.66
- Is greening happening in semiarid ecosystems? What is the uncertainty?
- If so does this reflect increased productivity of existing species (i.e. sagebrush) or has the composition of plant communities has changed?
- How will shifts in structural (and biochemical) changes that impact productivity levels be manifested across the landscape?

Credit: Jiafu Mao et al (2016); Nature. DOI: 10.1038/NCLIMATE3056

Cross-scale interactions

Adapted from Heffernan et al (2014) and Folke et al (2011).

Science questions

- What metrics capture vegetation productivity across scales?
- What are the uncertainties of parameters for improving predictions of vegetation dynamics across scales?
 - Structure fractional cover, LAI, height, biomass
 - Biochemistry

Data collection

Measurements (plot level)

Density Cover (line intercept method) LAI

Measurements (Individual)

LAI Allometry (widths and height) Biomass

SLA

Leaf chemistry Spectrometer TLS

Year	2014				201				
Sensors Sites	ALS	AVIRIS	TLS	ASD	ALS	AVIRIS	TLS	ASD	Number of plots
RCEW	\checkmark	\checkmark	×	Some	×	\checkmark	\checkmark	\checkmark	53 (four revisit plots)
Hollister	×	\checkmark	×	×	×	\checkmark	×	×	17
Birds of Prey	×	\checkmark	×	×	×	\checkmark	×	×	26
Big Pine	\checkmark	\checkmark	×	\checkmark	×	\checkmark	×	\checkmark	30
Lone Pine	\checkmark	\checkmark	×	\checkmark	×	\checkmark	×	\checkmark	30 (all revisited)

Challenges

Mean (plots) LAI = 0.6, n=64 Bright soil and litter > the spectral contribution of plants Lack of strong red edge Canopy structural effects

Cover

- HyspIRI-simulated variables related to the red edge, water content and anthocyanins had high predictive power for shrub cover
- Scaling across sites resulted in small decrease in predictive

power

Mitchell, JJ; Shrestha, R; Spaete, LP; Glenn, NF, 2015, Combining airborne hyperspectral and LiDAR data across local sites for upscaling shrubland structural information: Lessons for HyspIRI, *Remote Sensing of Environment*.

Nitrogen

- PLSR using leaf mass per unit area & plot level imaging spectroscopy
 - $R^2 = 0.72$
 - R² = 0.95 (min bare ground)

Mitchell, JJ; Glenn, NF; Sankey, TT; Derryberry, DR; Germino, MJ, 2012, Remote sensing of sagebrush canopy nitrogen, *Remote Sensing of Environment*

- PLSR using LAI, density, & SLA with plot level imaging spectroscopy
 - R² = 0.74-0.97

Mitchell, JJ et al., in prep

LAI – optical methods

- Empirical methods (PLSR): based on relationships between vegetation indices and LAI.
 - Narrow band indices
 - Red edge inflection point
 -
- Physical methods: physics of radiation interaction with elements of a canopy.
 - Radiative transfer models (RTMs)
 - Geometric-optical models
 - Hybrid geometric-RTMs models
 - Computer simulation models
 - Monte Carlo ray tracing models
 - Radiosity methods
- Machine learning: mimic the underlying physical process
 - Artificial neural network (ANN)
 - Random forest
 -

LAI: all sites

Canopy scale

Dataset	RMSE	R ²	#comp	#features
Reflectance	0.51	0.33	5	1727
Reflectance_VIP	0.58	0.13	1	361
First Derivative	0.45	0.47	3	1727
First Derivative_VIP	0.33	0.70	4	607
Second Derivative	0.43	0.52	2	1712
Second Derivative_VIP	0.44	0.50	2	732

Plot Scale

Dataset all	RMSE	R ²	# comp	#features
Reflectance	0.31	0.38	6	354
Reflectance_VIP	0.27	0.52	8	140
First Derivative	0.20	0.73	9	354
First Derivative_VIP	0.21	0.72	10	110
Second Derivative	0.23	0.64	5	354
Second Derivative_VIP	0.25	0.59	4	121

LAI: spatial & temporal stability

Dataset	RMSE	R ²	#comp	#features
SecondDerivative (~=RC14)	0.22	0.70	4	95
SecondDerivative (=RC14)	0.33	0	4	95
SecondDerivative (~=Holl14)	0.25	0.64	4	117
SecondDerivative (=Holl14)	0.50	0	4	117
SecondDerivative (~=RC15)	0.19	0.77	4	111
SecondDerivative (=RC15)	1.5	0	4	111
SecondDerivative (~=BoP15)	0.18	0.68	5	147
SecondDerivative (=BoP15)	0.47	0.02	5	147
Dataset	RMSE	R ²	#comp	#features
Dataset SecondDerivative_All (~=2014)	RMSE 0.26	R ² 0.64	#comp 3	#features 354
Dataset SecondDerivative_All (~=2014) SecondDerivative_All (=2014)	RMSE 0.26 1	R ² 0.64 0	#comp 3 3	#features 354 354
Dataset SecondDerivative_All (~=2014) SecondDerivative_All (=2014) SecondDerivative _All(~=2015)	RMSE 0.26 1 0.22	R ² 0.64 0 0.31	#comp 3 3 1	#features 354 354 354 354
Dataset SecondDerivative_All (~=2014) SecondDerivative_All (=2014) SecondDerivative_All(~=2015) SecondDerivative_All (=2015)	RMSE 0.26 1 0.22 0.53	R ² 0.64 0 0.31 0	#comp 3 3 1 1	#features 354 354 354 354 354
Dataset SecondDerivative_All (~=2014) SecondDerivative_All (=2014) SecondDerivative_All(~=2015) SecondDerivative_All (=2015) SecondDerivative_All(~=2014)	RMSE 0.26 1 0.22 0.53 0.26	R ² 0.64 0.31 0 0.64	#comp 3 3 1 1 1 3	#features 354 354 354 354 354 121
Dataset SecondDerivative_All (~=2014) SecondDerivative_All (=2014) SecondDerivative_All(~=2015) SecondDerivative_All (=2015) SecondDerivative_All(~=2014) SecondDerivative_VIP (=2014)	RMSE 0.26 1 0.22 0.53 0.26 1.08	R2 0.64 0 0.31 0 0.64 0 0.31 0 0.64 0 0.64	#comp 3 1 1 3 3 3 3 3 3 3 3 3 3 3	#features 354 354 354 354 121 121
Dataset SecondDerivative_All (~=2014) SecondDerivative_All (=2014) SecondDerivative_All(~=2015) SecondDerivative_All (=2015) SecondDerivative_All(~=2014) SecondDerivative_VIP (=2014) SecondDerivative_VIP (~=2015)	RMSE 0.26 1 0.22 0.53 0.26 1.08 0.22	R2 0.64 0 0.31 0 0.64 0 0.31 0 0.64 0 0.64 0 0.64 0 0.34	#comp 3 1 1 3 3 3 3 3 3 3 3 3 3 1	#features 354 354 354 354 121 121 133

Full waveform lidar attributes

- Height based parameters
- Amplitude relate to radiometric propertie of the target
- Pulse width- relate to surface roughness of the target
- Backscatter cross section/ backscatter coefficient – function of both area and reflectivity (calibrated parameter)
- Differential target cross section (through waveform deconvolution)
- Rise time vertical structural distribution of the target (especially good when compare single pulse waveforms - ecosystems dominated by low stature vegetation)
- Total energy of the waveform structural + radiometric response of the target

5.2002 5.2004

5.2002 5.2004

LAI: AVIRIS & ALS

Plots with both AVIRIS and ALS

Dataset	RMSE	R ²	#comp	#features	
Hyper-smoothed-lidar	0.25	0.30	1	362	
Hyper-smoothed- lidar_VIP	0.24	0.35	1	210	
First derv - lidar	0.13	0.80	3	362	
First derv – lidar_VIP	0.13	0.78	2	122	
Second derv – lidar	0.13	0.79	2	362	
Second derv-lidar_VIP	0.15	0.72	1	133	

Full waveform aerial lidar variables: mean and standard deviation of pulse width, rise time, backscatter coefficients and amplitude

Preliminary full waveform results: LAI

Cross -site, RCEW & Hollister

Single site, RCEW

RTM

1-D PROSAIL model

	Parameters	Fixed	Min	Max	Mean	Sigma	Source
1	Cab	-	20	90	45	30	Verger, 2011
	Car	-	3.4	38.3	10.3	4.21	LOPEX*
	Cbrown	0	-	-	-	-	Field experience
Lear	Cw		0.0002	0.05	0.01	0.006	LOPEX*
	Cm	-	0.003	0.02	0.007	0.003	Verger, 2011
	Ν	-	1	2.5	1.5	1	Verger, 2011
Canopy	LAI	-	0	8	1	0.5	Verger, 2011 + Field
							data
	hspot	0.1	-	-	-	-	Verger, 2011
	rsoil	Dry	-	-	-	-	Field Experience
View and illumination	tts	47	-	-	-	-	NOAA*
	tto	0	-	-	-	-	Field experience
	psi	0					Filed experience

LUT inversion (sagebrush); the first 100 simulations with minimum RMSE with plot signature

- Forward modeling had poor results
- LUT and ANN inversions didn't perform well
- 1-D can't capture the scene signature (i.e. canopy structure and background soil) using either forward or inverse approaches

Next: 3-D DART model

Structural correction Return waveform

Image credit: Jean-Philippe Gastellu-Etchegorry et al (2015)

Lidar assimilation (ASO's Reigl LMS Q 1560, full waveform)

Directional area scattering factor

Other Features

- Continuum removal
- Shape based indices

ootprint

Beam divergence width

Discrete

records

Crown

return

Inderstory return Ground

return

Conclusions

- Understanding shrubland dynamics:
 - leverage full range of imaging spectroscopy data
 - synergistically use lidar
 - explore productivity
 - consider type conversions / water use
- Cross-site and spatial heterogeneity need to be addressed:
 - patterns & distributions
 - seasonality

State of the second sec

Kormos, et al 2016, REAM

The state