

EO-1 Hyperion Spectral Time Series for assessment of ecosystem function Petya K. E. Campbell^{1, 2} K. Fred Huemmrich^{1, 2}, Elizabeth M. Middleton¹ and Sarah Voorhies²

¹ NASA/Goddard Space Flight Center, USA
² University of Maryland Baltimore County

Hotspots of bio-diversity http://www.plants2020.net/about-the-gspc

EO-1 Acquisitions Since Launch

>85,000 (2000 through May 2016)

EO-1 Hyperion Spectral Time Series

Repeated Collections at: CEOS calibration sites (blue triangles), FLUX sites (green triangles), NEON (white circles) and Volcanoes (purple diamonds)

EO-1 Spectral Time Series at FLUX Sites

FLUX site locations and number of Hyperion cloud free images

Seasonal Spectral Changes

Changes in the chemical and physical configuration of vegetation canopies are expressed as changes in the <u>contiguous spectral signatures</u>.

Acquisition date (YearDOY)

Data and Processing

Sites

FLUX Site, Location	Harvard Forest, MA, USA	Park Falls, WI, USA	Skukuza, South Africa	
Climate	Temperate	Temperate	Arid, Steppe, Hot	
Vegetation type	Northern Hardwoods: EMS Evergreen: Eastern hemlock	Deciduous Broadleaf Mixed	Grassland Savannah	
Tower height (m)	US-Ha1 and US-Ha2 30 m	US-Pfa 30 m, <u>122 m</u> , 396 m	ZA-Kru 30 m	
Hyperion images	12 (2001-2013)	47 (2008-2014)	72 (2008-2014)	

Hyperion Time Series at Skukuza

Midday GEP estimated using a partial least squares regression

Average Hyperion spectral reflectance for Skukuza (black) and the coefficients derived from PLSR vs. GEP (red)

Changes in Vegetation Reflectance and Spectral Features, Skukuza

Wavelength (µm)

Chlorophyll Feature (PRISM) and GEE

Narrow-band VIs and GEE

Seasonal Variation in GEE and Spectral VIs (G31), Skukuza

GEE at Skukuza, Based on FD

Skukuza, Hyperion VIs, Regression Coefficients (R²)

Spectral	Description (bands, nm)	Harvard For <i>Ha1: EM</i> S	est MA, USA S Ha2: HL	Park Falls Wisconsin, USA	Skukuza South Africa
Parameters		R ² [NEP]		R ² [NEE]	R ² [GEE]
680nm FD	continuous	0.65	ns	0.56 **	0.68 *
680nm FA	continuous	0.69	ns	0.56 **	0.73 *
G31	750, 705	0.76	0.46	0.70	0.77 *
NDVI	Av. 760-900, 620-690	0.64	0.29	0.68	0.67
Dmax	D max (650750 nm)	0.78	0.73	0.84 *	0.74
OSAVI	670, 800	0.71	0.63	0.76	0.72
NDII	819, 1649	ns	ns	0.64 **	0.69
MSR705	445, 750	0.82	0.67	0.71	0.72
PRI3	530, 550	0.73	0.85	0.62	0.43
R685_655	685, 655	0.62	ns	0.54	0.61

* Worked well at other sites (e.g. Mongu, Duke forest and Konza prairie; Campbell et al. 2013) ** Mid-April through mid-October only, with outlier removed

Corresponding Spectral and NEP Phenology

Spectral bio-indicator associated with chlorophyll content best captured the CO₂ dynamics related to vegetation phenology. Required multitemporal data set.

Mongu : Campbell et al. 2013

Conclusions

- The results indicate a strong correlation between CO₂ flux parameters and Hyperion's spectral parameters associated with chlorophyll and photosynthetic function.
- The spectral parameters associated with photosynthetic dynamics across all sites require continuous spectra.
 - In the conifer forests chlorophyll levels do not change as significantly as in the deciduous forest. In the hemlock forest (Ha 2: HL) phenology was traceable with the PRI3 SBI, when in the deciduous canopies (Ha1: EMS, Park Falls and Skukuza) derivative and feature depth SBIs performed better.
- The approach requires a diverse spectral coverage representative of the seasonal dynamics in vegetation function.

This study provides a step toward a common (global) hyperspectral strategy to monitor the vegetation ability to uptake CO_2 .

Locations with >10 Hyperion Acquisitions

Spectral Parameters and LUE, Skukuza

