HyspIRI Preparatory Airborne Science: Investigations of Volcanic Phenomena

Vincent Realmuto, Jet Propulsion Laboratory, California Institute of Technology

Chad Deering, Michigan Technological University

David Pieri, Jet Propulsion Laboratory, California Institute of Technology

Michael Ramsey, University of Pittsburgh

Greg Vaughan, United States Geological Survey

© 2016 California Institute of Technology. Government sponsorship acknowledged.

Five Investigations
Focused on Active
Vents of Kilauea
Volcano

Halemaumau Crater, Kilauea Summit Caldera SO₂ emissions up to 2500 metric tonnes/day since 2008

Puu Oo Vent and Southeast Rift Zone SO₂ emissions and episodic surface activity since 1983

Understanding Basaltic Volcanic Processes by Remotely Measuring the Links between Vegetation Health and Extent and Volcanic Gas and Thermal Emissions using HyspIRI-like VSWIR and TIR Data

Chad Deering, Michigan
Technological University
R. Greg Vaughan, USGS
Astrogeology Science Center
Isabella Mariotto, Michigan
Technological University
Jessica McCarty, Michigan
Tech Research Institute

Understanding Basaltic Volcanic Processes by Remotely Measuring the Links between Vegetation Health and Extent

Objectives:

- Quantify the effects of volcanic gas and thermal emissions on the surrounding landscape
- Characterize the spatial and temporal relationships between vegetation cover, surface temperature, and gas (SO₂, H₂S, CO₂) emissions
- Evaluate the performance of hyperspectral vs. multispectral vegetation indices in monitoring the health of vegetation

Measuring radiant temperature at active fumarole site (photo courtesy of USGS-HVO)

Understanding Basaltic Volcanic Processes by Remotely Measuring the Links between Vegetation Health and Extent

Approach:

- Make diffuse H₂S and CO₂
 measurements and map local
 vegetation cover
- Develop hyperspectral vegetation indices (HVI) and hyperspectral narrow bands (HNB)
- Develop hyperspectral libraries
- Develop plant stress gradient models
- Generate surface temperature maps
- Create and test automated change detection algorithms

Hyperspectral narrow bands (HNB) describing plant physiology and stress. Hyperspectral vegetation indices (HVI) are based on sets of contiguous HNB's (Thenkabail et al., 2013)

Understanding Basaltic Volcanic Processes by Remotely Measuring the Links between Vegetation Health and Extent

Investigation Sites:

David Pieri, Jet Propulsion Laboratory, California Institute of Technology

Andres Diaz, University of Costa Rica

Florian Schwandner, University of California – Los Angeles

Lance Christensen, Jet Propulsion Laboratory, California Institute of Technology

Geoffrey Bland, NASA Goddard Space Flight Center, Wallops Flight Facility

Peter Mouginis-Mark, University of Hawaii – Manoa

Matt Fladeland, NASA Ames Research Center Fabrizia Buongiorno, Istituto Nazionale di Geofisica e Volcanologia (Italy)

Objectives:

- In situ validation of ER2-based MASTER/HyTES and AVIRIS gas and aerosol retrievals using freeflying UAV-based, aerostat-based, and ground instrumentation
- Characterize the near surface extent, distribution, constituents, and dispersion characteristics of gas and aerosol emissions from Kilauea Volcano, e.g. SO₂ hydrolysis
- To improve accuracy of local SO₂ and CO₂ flux estimates using in situ airborne data
- Improve approaches to statistical representation of UAV data

Approach:

- Deploy Dragon Eye UAVs, aerostats, and ground devices to Kilauea (SO₂, CO₂; mass spectrometer; nephelometer).
- Conduct science activities that support ER2 and other remote sensing observations (gas/aerosol detects, T, P, H₂O profiles).
- Conduct science activities and analyses accessible to in situ observations
- Proceed with archival activities to take advantage of the JPL/NASA AVA

Investigation Sites:

Aerostat Lift Sites: Red Ovals

UAV Flight Operation Sites: Purple ER-2 Ground Swath: Yellow

Michael Ramsey, University of Pittsburgh

Andrew Harris, Univesité Blaise Pascal (France)

I. Matthew Watson, University of Bristol (UK)

Matthew Patrick, USGS Hawaiian Volcano Observatory

IR image of Kilauea flow: Matt Patrick (HVO)

Objectives:

- Quantify the magnitude of temperature-dependent emissivity change for active basaltic surfaces using in situ field and laboratory IR data
- Determine the accuracy of hightemperature emissivity extraction at potential HyspIRI spatial resolutions and its impact on modeling of flow advance

Deployment of V.2.5 multispectral FLIR in Hawaii

Approach:

- The airborne data will be forward-modeled using a quantitative resampling methodology
- Ground-based multispectral TIR data will be acquired with new FLIR-based instrument
- The combined data will be used to validate a correction approach for thermally-mixed HyspIRI data using VSWIR and TIR data
- Results will be input into flow modeling to better monitor and predict future volcanic hazardous phenomena

FLIR filter images of Halemaumau Crater lava lake

Mapping the Composition and Chemical Evolution of Plumes from Kilauea Volcano: Preparing for the Use of HyspIRI Data to Monitor the Impact of Volcanic Plumes on Air Quality

Vincent Realmuto, Jet Propulsion Laboratory, California Institute of Technology

Florian Schwandner, University of California – Los Angeles

Steven Businger, University of Hawaii – Manoa

A Sutton, USGS Hawaiian Volcano Observatory

Tamar Elias USGS Hawaiian Volcano Observatory Keith Horton, Flyspec, Inc.

MODIS RGB: 9 May 2008 Kona (SW) Wind Conditions

Mapping the Composition and Chemical Evolution of Plumes from Kilauea Volcano

Objectives:

- Prepare for the use of HyspIRI VSWIR and TIR data to monitor the impact of Kilauea SO₂ plumes on air quality in the state of Hawaii
- Map the initial concentrations of SO₂ and the conversion of SO₂ into SO₄ aerosols
- Evaluate the impact of HyspIRIbased SO₂ and conversion-rate estimates on the skill of the VMAP vog forecast model

Mapping the Composition and Chemical Evolution of Plumes from Kilauea Volcano

Approach:

- Collect AVIRIS and MASTER data as analogues for HyspIRI VSWIR and TIR data
- Derive SO₂ concentration estimates from the TIR and SO₄ AOD estimates from the VSWIR
- Validate the retrievals against ground-based measurements collected during deployment
- Evaluate the potential impact of HyspIRI data products on the forecasting skill of VMAP vog model

Comparison of ASTER-based SO₂ retrievals to measurements from direct-sampling ground station

Mapping the Composition and Chemical Evolution of Plumes from Kilauea Volcano

Investigation Sites:

Hawaii Health Department Air Quality Stations trace the route of Kilauea plumes

Airborne Coverage: Southern Box

Airborne Coverage: Western Box

Developing an Automated Volcanic Thermal Alert Algorithm using Moderate Spatial Resolution VSWIR and TIR Data: Implications for the Future HyspIRI Mission

R. Greg Vaughan, USGS
Astrogeology Science Center
Moses Milazzo, USGS
Astrogeology Science Center
Jason Laura, USGS
Astrogeology Science Center
Matthew Patrick, USGS
Hawaiian Volcano Observatory
Laszlo Kestay, USGS
Astrogeology Science Center

Developing an Automated Volcanic Thermal Alert Algorithm using VSWIR and TIR Data

Objectives:

- Leverage the fine spatial resolution and frequent observations that will be provided by HyspIRI
- Combine VSWIR and TIR measurements
- Improve sensitivity to subtle thermal anomalies
- Incorporate spatial context and temporal variance to minimize false anomalies

High-temperature features at Oldoinyo Lengai Volcano (Tanzania) identified in ASTER VNIR, SWIR, and TIR data (Vaughan et al., 2008)

Developing an Automated Volcanic Thermal Alert Algorithm using VSWIR and TIR Data

Approach:

- Collect AVIRIS and MASTER data as analogues for HyspIRI VSWIR and TIR data
- Employ archived data (e.g. Landsat 8) to establish temporal background
- Validate the alert algorithm against ground-based measurements collected during deployment
- Evaluate the improvements in performance of HyspIRI alert vs. current operation thermal alters (e.g. MODVOLC)

Developing an Automated Volcanic Thermal Alert Algorithm using VSWIR and TIR Data

Investigation Sites:

Thank You for Your Attention.