Spectral-structural interactions at fine-scales

Wei Yao ¹, Martin van Leeuwen ², Paul Romanczyk ¹, Dave Kelbe ¹, and Jan van Aardt ¹

¹Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology

²University College London

02 June 2016

Outline

Introduction

- Project outline and objectives
- DIRSIG

2 Methods

- Study area
- Airborne and field data
- Building virtual scenes
- DIRSIG simulation

3 Results

- Simulation results
- 4 Conclusions/Outlook
 - Future work

Project outline and objectives DIRSIG

Introduction Project outline and objectives

Assessing the impact of sub-pixel vegetation structure on imaging spectroscopy

Project outline and objectives DIRSIG

Introduction Project outline and objectives

How large is a 60×60 m pixel?

Photograph courtesy of Howard Bruce Campbell (AirplaneHome.com)

Project outline and objectives DIRSIG

Introduction Project outline and objectives

- Objective 1: Assess how leaf area index (LAI) affects the spectral response on a per-pixel basis.
 - Determine a stable and valid LAI measuring protocol which could be used to collect ground truth data;
 - Evaluate a range of vegetation indices (VIs), extracted from narrow-band imaging spectroscopy data, to estimate LAI; and
 - Assess the scalability of selected narrow-band VIs from 20 m AVIRIS to 60 m HyspIRI data sets.

Project outline and objectives DIRSIG

Introduction Project outline and objectives

- *Objective 2*: Assess how sub-pixel variations in tree canopy height, forest cover, forest clustering, and other forest inventory variables affect the spectral response on a per-pixel basis.
- *Objective 3*: Evaluate how the sub-pixel structural variation interacts with the HyspIRI systems response characteristics, most notably in terms of the point spread function (PSF).

Project outline and objectives DIRSIG

Introduction DIRSIG simulation - overview

DIRSIG = Digital Imaging and Remote Sensing Image Generation Model Under development for 20+ years at Rochester Institute of Technology

http://dirsig.org

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Study area

The National Ecological Observatory Network (NEON), Pacific Southwest Domain (D17) San Joaquin Experimental Range (SJER, core site) Soaproot Saddle (SOAP, relocatable site) SJER SOAP Sumner **Bolling Hills** California Clovis Fresno, CA 0 km Riverbend Figure from Google Map Fresno

2016-06-02

Jan van Aardt

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Field collection

• San Joaquin Experimental Range:

• Field data collected in 12 AOP plots during June 9 - 14, 2013

plot 116

AOP: Airborne Observation Platform

2016-06-02

Jan van Aardt

2016 HyspIRI Science Symposium

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Field collection

- Soaproot Saddle:
 - Field data collected in 8 AOP plots during June 16 20, 2013

Plot 43

AOP: Airborne Observation Platform

2016-06-02

Jan van Aardt

2016 HyspIRI Science Symposium

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Field collection

Measurements at each spot within 80 m \times 80 m plot:

- LAI (AccuPAR LP-80)
- Terrestrial laser scanning (SICK LMS-151)
- Spectra (SVC HR-1024i)
- Hemispherical photos
- GPS position

2016-06-02

Jan van Aardt

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Airborne collection

Airborne data were collected by

- NASA's "classic" Airborne Visible Near-Infrared Imaging Spectrometer (AVIRIS-C),
- NEON's high-resolution imaging spectrometer (NIS), and
- Second Second

http://aviris.jpl.nasa.gov
 http://data.neoninc.org

Study area Airborne and field data **Building virtual scenes** DIRSIG simulation

Methods Building virtual scenes

Three plots were selected to build virtual scene

Plot 116

Plot 299

Plot 143

Study area Airborne and field data **Building virtual scenes** DIRSIG simulation

Methods Building virtual scenes

NEON's LiDAR products

DTM

DHM

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Building virtual scenes

Leaf spectral samples

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Building virtual scenes

Virtual scene layout

Study area Airborne and field data **Building virtual scenes** DIRSIG simulation

Methods Building virtual scenes

The side view of plot 116 scene

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate AVIRIS data

Verify the plot 116 scene by simulating NEON's high-resolution spectrometer (NIS)

NIS data

DIRSIG simulation results

Jan van Aardt

2016 HyspIRI Science Symposiun

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate AVIRIS data

Verify the model by the plot 116 scene

A2 Radiance (μW cm⁻² nm⁻¹ sr⁻ Radiance (µW cm⁻² nm⁻¹ sr⁻ 200 - - B1 A2 1500 1500 **AVIRIS** 1000 1000 A3 AA data 500 500 0 500 1000 1500 2000 500 1000 1500 2000 Wavelength (nm) Wavelength (nm) - - B3 Radiance (µW cm⁻² nm⁻¹ sr⁻ Radiance (µW cm⁻² nm⁻¹ sr 200 200 - - - B4 Simulated **B2** 1500 1500 1000 1000 data B3 **B4** 500 500 0 1500 500 1000 1500 2000 500 1000 2000 Wavelength (nm) Wavelength (nm)

R٠

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate HyspIRI

DIRSIG key settings

- Height = 600km
- GSD = 60m
- 224 bands, 380 2500nm, 10nm FWHM
- Date & time: 2013-06-12T19:00:00 (UTC)
- Use MODTRAN to simulate atmospheric radiative transfer

MODTRAN key settings:

- Enable multiple scattering (IMULT = +1)
- Mid-latitude summer model (MODEL = 2)
- RURAL extinction (IHAZE = 1)

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate HyspIRI

Point spread function (PSF) 2-D Gaussian Function, FWHM = pixel size (60m GSD)

2-D Gaussian kernel

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate HyspIRI

Generate multiple simulated HyspIRI data sets of different:

- Leaf area index (LAI)
- Canopy cover
- Position and distribution of trees
- Tree clustering

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate PAR/LAI sensor

Project a hemisphere onto a plane for data collection and analysis

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate PAR/LAI sensor

DIRSIG key settings:

- Data-driven detector model
- Master detector array: 350×350
- Secondary detector array: 100 × 100 (for sun disk)
- Use MODTRAN to simulate atmospheric radiative transfer

MODTRAN key settings:

- Enable multiple scattering (IMULT = +1)
- Mid-latitude summer model (MODEL = 2)
- Use RURAL extinction (IHAZE = 1)

06/12/2013, 07:00-17:00

Above-canopy PAR

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate PAR/LAI sensor

Below-canopy PAR

Real Image

DIRSIG Simulation

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate PAR/LAI sensor

Below-canopy PAR

Real Image

DIRSIG Simulation

Study area Airborne and field data Building virtual scenes DIRSIG simulation

Methods Simulate PAR/LAI sensor

Below-canopy PAR

Real Image

DIRSIG Simulation

Simulation results

Results Simulation results

Above-canopy PAR

Simulation results

Results Simulation results

Below-canopy PAR and LAI of single canopy

The LAI of a single canopy can be measured along a transect

Simulation results

Results Simulation results

Sparse forest LAI

- LAI was estimated from simulated PAR measurements of a virtual PAR sensor in DIRSIG
- Normalized Difference Vegetation Index (NDVI) was extracted from simulated imaging spectroscopy data

Simulation results

Results Simulation results

Haboudane, D., et. al. "Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture." Remote sensing of environment 90, no. 3 (2004): 337-352.

Simulation results

Results Simulation results

Gong, P., et. al. "Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data." Geosci. Remote Sens. IEEE Trans. On 41, (2003): 1355-1362.

Simulation results

Results Simulation results

Simulation results

Results Simulation results

Simulation results

Results Simulation results

Tree canopy cover refers to the proportion of land area covered by tree crowns (m^2/m^2) .

Simulation results

Results Simulation results

Simulation results

Results Narrow band vegetation indices (VIs) to characterize the canopy cover

$$VI = rac{Band1 - Band2}{Band1 + Band2}$$

Simulation results

Results Simulation results

Simulation results

Results Simulation results

Tree position

Simulation results

Results Simulation results

Tree position

Simulation results

Results Simulation results

Tree position

Simulation results

Results Simulation results

Tree position

2016-06-02

Jan van Aardt

2016 HyspIRI Science Symposiun

Simulation results

Results Simulation results

Tree position: spectral angle

$$heta(x,y) = \cos^{-1}\left[rac{\mathbf{x}(x,y)\cdot\mathbf{x}_0}{\|\mathbf{x}(x,y)\|\cdot\|\mathbf{x}_0\|}
ight]$$

Future work

Conclusions/Outlook

Results indicate:

- HyspIRI is sensitive to forest density in the blue and red spectral regions due to pigment concentration changes, as well as the SWIR region due to water content variation.
- The effect of tree position is determined by the system's PSF.
- The system's suitability for consistent global vegetation structural assessments could be improved by adapting calibration strategies to account for this variation in sub-pixel structure.

Future work

Conclusions/Outlook

- Increase the number of simulations to assess other sub-pixel vegetation structural variables:
 - tree clustering
 - crown size
- **2** Quantify the simulation results:
 - employ statistical methods (wavelength pair-wise comparison, derivative analyses) to analyze simulation results
- Investigate LiDAR-based approaches for calibration of HyspIRI structural estimates

Acknowledgements

- This material is based upon work supported by the NASA HyspIRI Mission under Grant No. NNX12AQ24G.
- Thanks to field team: Ashley Miller, Terence Nicholson, Claudia Paris, and Alexander Fafard
- Thanks to Chris DeAngelis for building virtual scenes
- Collaborators: Dr. Crystal B. Schaaf (UMB) and Dr. Alan H. Strahler (BU)
- Fine-scale airborne data were provided by the NEON AOP team; NEON is a project sponsored by the National Science Foundation and managed under cooperative agreement by NEON, Inc.

Thanks!

Wei Yao (wxy3806@rit.edu), PhD student

Jan van Aardt (vanaardt@cis.rit.edu), Adviser

