Ground Measurement Support for Airborne Campaigns: Susan Ustin

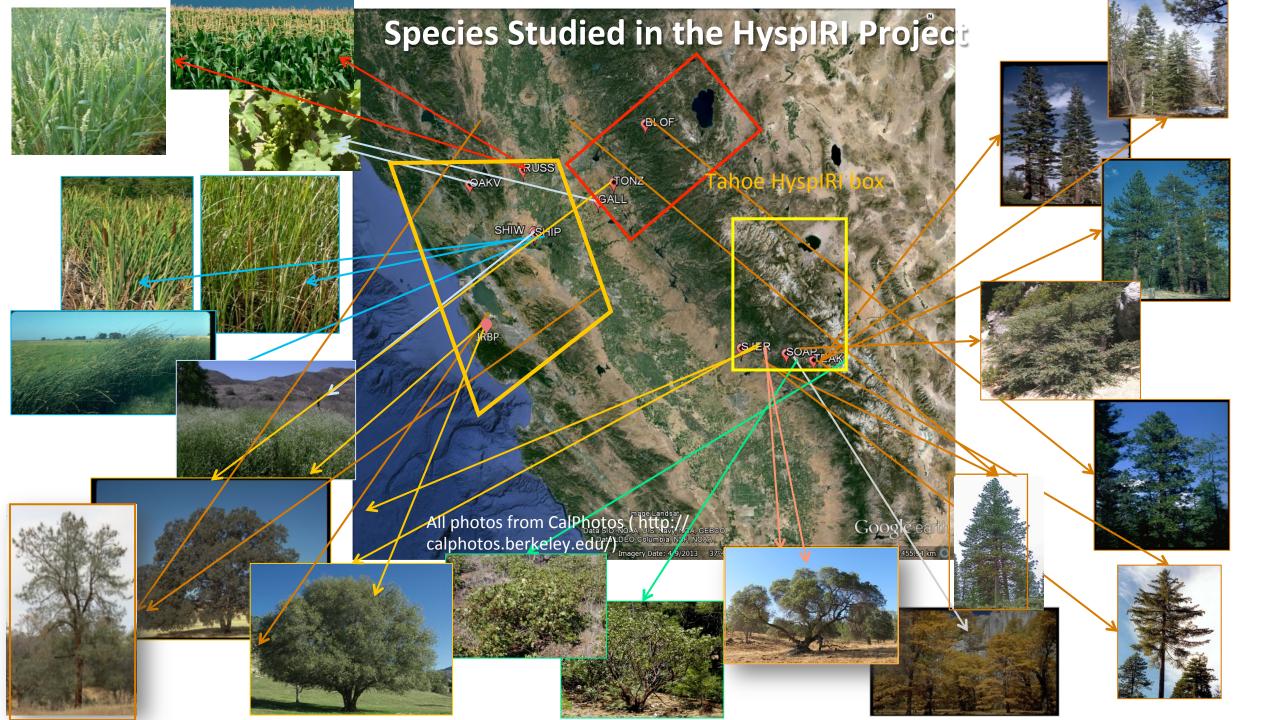
Leaf Clip (RF only)

Measure with leaf clip or integrating sphere?

LI-COR 1800 Integrating Sphere

Integrating Sphere (RF & TM)

california


Perspectives on the HyspIRI Airborne Campaigns

Imaging spectroscopy provides information rich images that require more understanding of field conditions:

- We lack ability to retrieve environmental information from first principles
- We don't understand scattering processes in complex canopies
- We don't understand the impact of spatial resolution on spectral observations in nonhomogeneous vegetation stands
- We don't know when spectral relationships are linear or non-linear
- IS data dimensionality exceeds our current ability to explain

Why Invest Time/Money in Field Campaigns?

- 1. Calibration and Geolocation Data
- 2. Collect Data to Quantify State and Condition of the Environment
- 3. Provide Independent Data for Validation
- 4. To Understand Environmental Processes
- 5. To Collect Data for Model Development
- 6. Document Discovery of Unexpected Condition in Environment
- Understand biochemical and structural changes with phenological cycle in native species
- Determine background spectral materials (soils, rock outcrops, different types of plant detritus and woody debris and understory live vegetation
- Characterize trait patterns relevant for RS in different species (leaf mass area and thickness, leaf size, biochemistry,
- Characterize stand structure, size classes, density, height,
- Characterize stand level leaf angle distribution, leaf area index
- Characterize unusual or unexpected events (such as the California Drought)

1. Calibration and Geolocation Data

Atmosphere—Yankee sun photometer (at Lake Tahoe) and balloon radiosonde

Measure atmospheric properties for Reflectance Calibration

Surface Radiance—ASD FR spectrometer

Soil sampling boxes for surface emissivity measurements

Measure Surface Temperatures

GPS measurements for geolocation information

2. Collect data to quantify state and condition of the environment

- a) How do traits vary within and between plant functional types (PFTs)? 1) Collect data at multiple sites of common species that represent different PFTs.
- b) What is the physiological condition of the forest each year since first NEON image collection in 2012
 - 1) Measure spectral reflectance of leaves of target species
 - 2) Measure trait properties: fresh weight, dry weight, leaf area, pigments, C, N

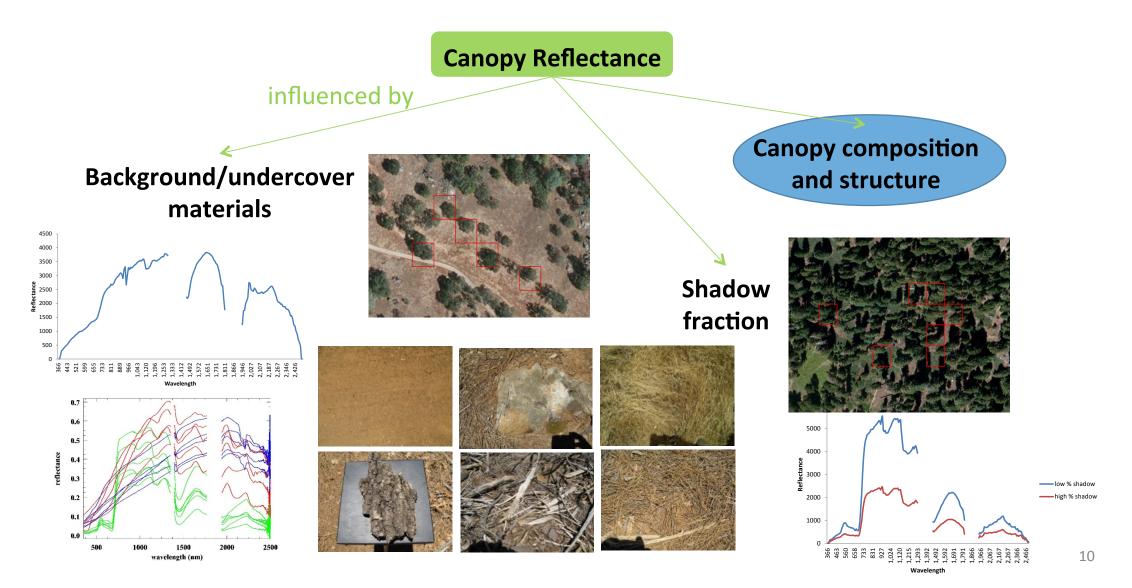
c) Evidence for drought stress

1) decline in LAI

2) decline in trait values for canopy water content, pigment concentration, increase in LMA, increase in fraction of NPV

USFS San Joaquin Experimental Range

Low canopy density (low LAI)

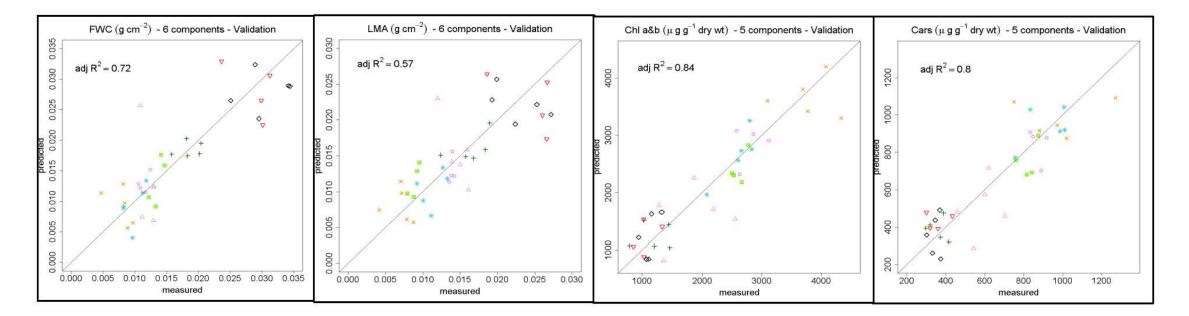

High canopy density (high LAI) and tall trees

Dr. Marguarita Huesca et al. Canopy Structural Attributes Derived from AVIRIS Data in a Mixed Broadleaf/Conifer Forest. RSE 2016.

Canopy structure assessment using imaging spectroscopy data

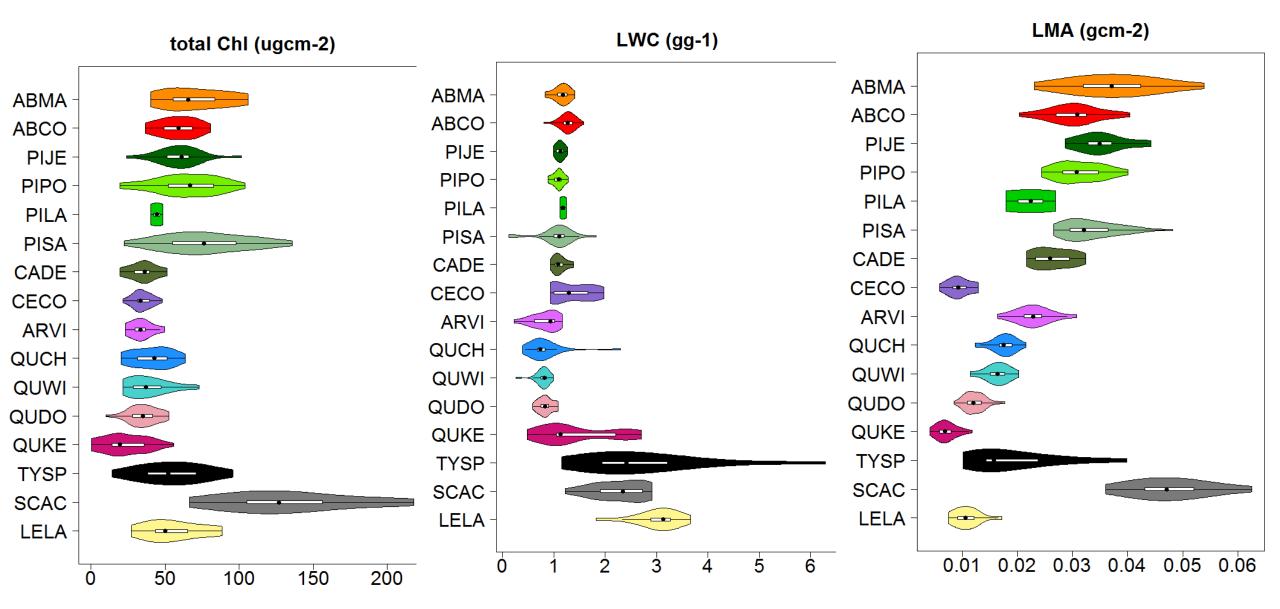
Estimation of leaf biochemistry with the use of remote sensing data

Challenges due to the variability of the pixel composition



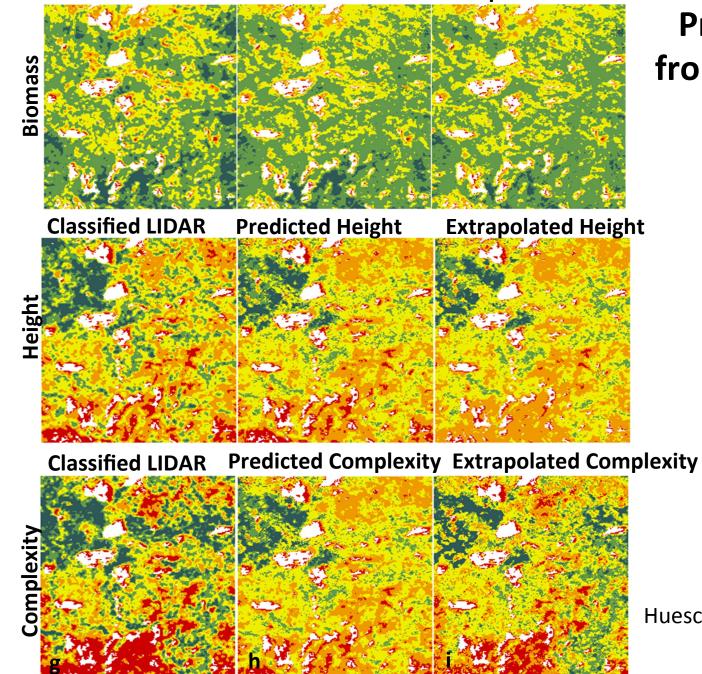
SITE	HYSPIRI BOX	ECOSYSTEM	FOCAL SPECIES	DATA COLLECTION (Spring, Summer, Fall)-yr	
Sherman Island Wetland (SHIW)	SF Bay	restored wetland	Typha spp. Schoenoplectus acutus	SP-13, SM-13, F-13 SP-14, SM-14, F-14	
Sherman Island Pasture (SHIP)	SF Bay	grazed pasture	Lepidium latifolium	SP-13, SM-13, F-13 SP-14, SM-14, F-14	
Oakville Vineyard (OAKV)	SF Bay	Agricultural	Vitis vinifera	SM-13	
Russell Ranch (RUSS)	SF Bay	Agricultural	Zea mays Triticum spp.	SP-13, SM-13 SP-14, SM-14	
Blodgett Forest (BLOF)	Tahoe	mixed broadleaf/conifer forest Quercus kelloggii Abies concolor Calocedrus decurrens Pinus ponderosa		F-13 SP-14, SM-14, F-14	
Tonzi Ranch (TONZ)	Tahoe	oak savanna woodland	Quercus douglasii Pinus sabiniana	SP-13, SM-13, F-13 SP-14, SM-14, F-14	
Gallo Vineyard (GALL)	Tahoe	agricultural	Vitis vinifera	SM-13 SP-14, SM-14	
San Joaquin Experimental Range (SJER)	Yosemite/NEON	oak savanna woodland	Quercus douglasii Quercus wislizeni Pinus sabiniana	SP-13, SM-13, F-13 SP-14, SM-14, F-14, SM-15	
Soaproot Saddle (SOAP)	Yosemite/NEON	mixed broadleaf/conifer forest	Quercus kelloggii Quercus chrysolepsis Pinus ponderosa Calocedrus decurrens Arctostaphylos spp.	SP-13, SM-13, F-13 SP-14, SM-14, F-14, SM-15	
Teakettle Experimental Forest (TEAK)	Yosemite/NEON	high elevation conifer forest	Abies concolor Abies magnifica Ceanothus cordulatus Pinus jeffreyi	SP-13, SM-13, F-13 SM-14, F-14, SM-15	

Site	Hemispherical Leaf Spectra (individuals; 2013 & 2014)	Leaf Clip Spectra (individuals)	Leaf Traits (individuals)	Field Spectra (unique targets)	LAI/Biomass (points)	Inventory (trees)
BLOF	55	90	55	2 soil; 20 NPV; 5 rock	225	406
TONZ	50	109	50	1 annual GV plot; 4 soil; 14 NPV; 7 rock	325	282
SJER	67	108	67	4 annual GV plots; 3 soil; 17 NPV; 10 rock	253	542
SOAP	86	108	86	7 understory GV; 4 soil; 18 NPV; 1 rock plot	281	1500
TEAK	76	54	76	6 understory GV; 3 soil; 10 NPV; 5 rock	111	1553
SHIP	25	n/a	25	3 GV plots	30	n/a
SHIW	50	n/a	50	n/a	4/4/4	n/a
GALL	48	26	48	2 GV transects; 1 soil transect	n/a	n/a
RUSS	103	66 plots	103	1 GV; 4 soil; 1 NPV	n/a	n/a
Total	640 (35/site)	561 (80/site)	640 (35/site)		1241	4283


640 (35/site) 561 (80/site) 640 (35/site) Total

Examples of Predicted vs. Measured Leaf Trait Values (n=37, June data)

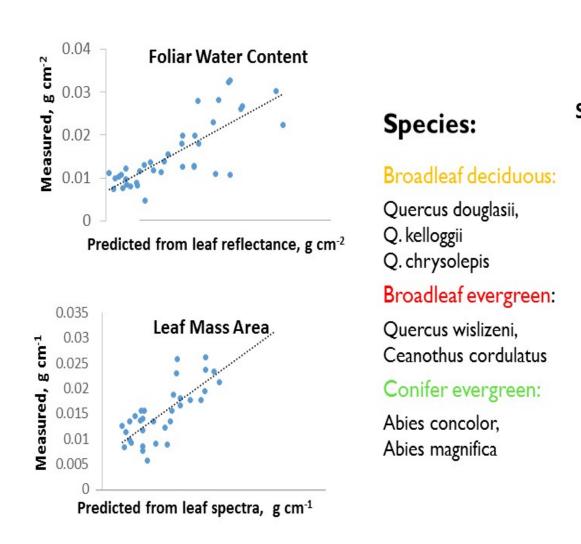
- * Quercus douglasii, Tonzi Ranch
- Quercus douglasii, San Joaquin
- × Quercus kelloggii, Soaproot Saddle
- △ *Quercus wislizeni*, San Joaquin
- + Quercus chrysolepsis, Soaproot Saddle
- Ceanothus cordulatus, Teakettle
- ◊ Abies concolor, Teakettle
- ▼ Abies magnifica, Teakettle

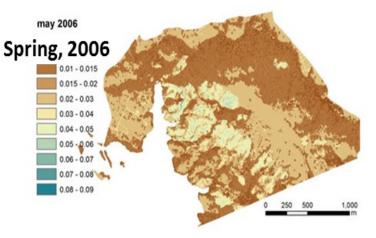

Trait plots (mean, variance, Min, Max) by Species

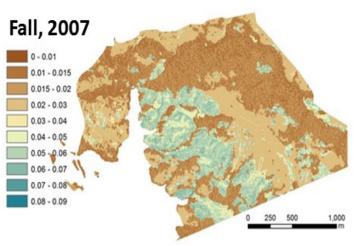
3. Provide Independent Data for Validation

- 1) Measure spectral reflectance of leaves of target species
- 2) Measure trait properties: fresh weight, dry weight, leaf area, pigments, C, N
- 3) Measure LAI, trees/area, species distribution
- 4) Measure reflectance of invariant calibration targets
- 5) Measure locations with GPS to provide secondary georectification or validation

Classified LIDAR Predicted Biomass Extrapolated Biomass


Predicting Canopy Structure from AVIRIS data using LIDAR data and field data for Validation

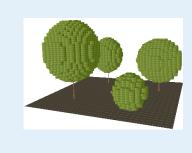

Huesca et al. RSE 2016


4. Collect Field Data To Understand Environmental Processes

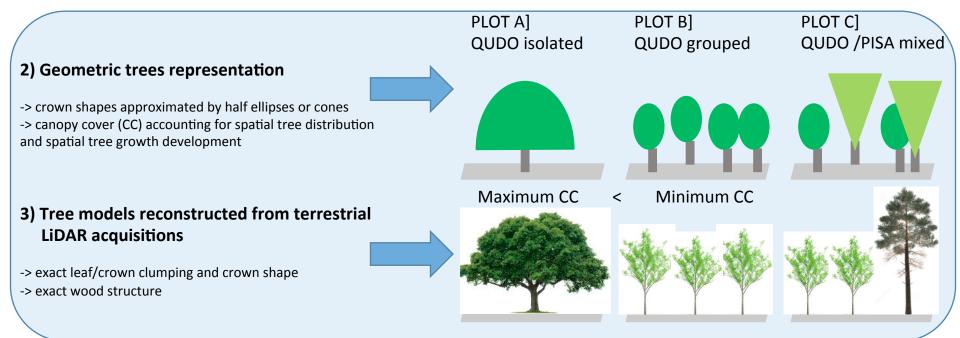
Leaf and Canopy Traits: Inversion of Prospect Radiative Transfer Model

Leaf Mass Area (LMA) Stanford's Jasper Ridge Biological Preserve

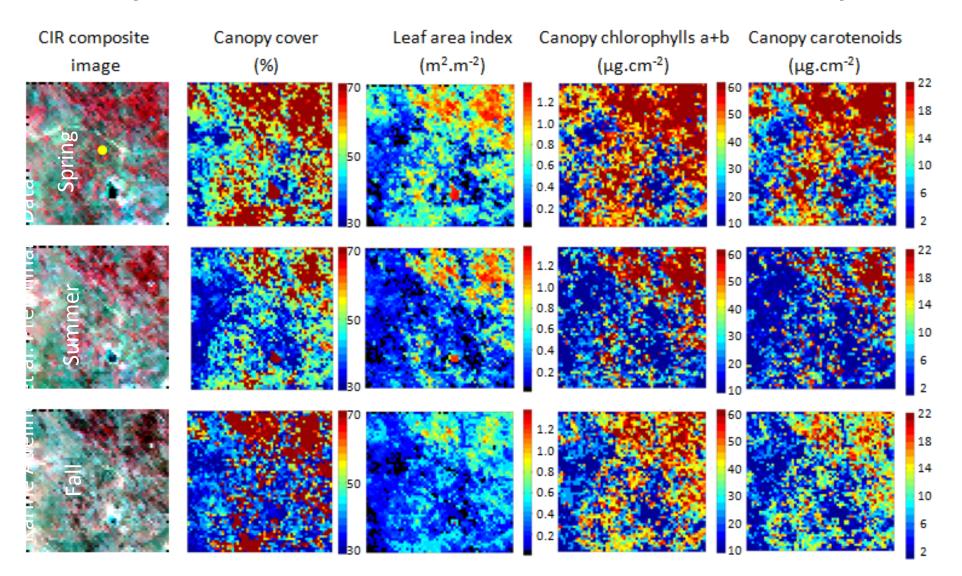
5. Collect Field Data for Model Development

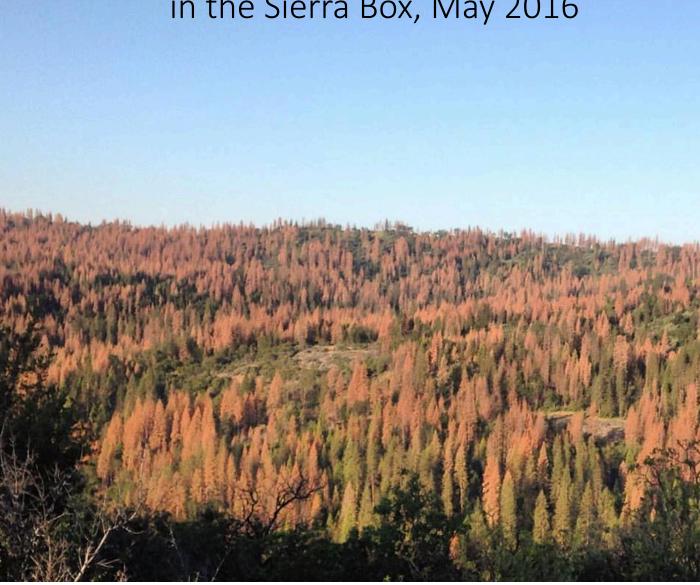

modeling strategies applied to savanna woodland ecosystems (ongoing study)

1) Simple forest representation


-> homogeneous stand in terms of species composition and

stage development


- -> ellipsoidal trees described by allometric parameters or
- ancillary information, same structural traits
- -> leaf angle distribution fixed
- -> impact of woody stems neglected


Influence of tree species and structure, and landscape spatial patterns

Prediction of canopy leaf chemistry & structure from Inversion of linked DART-PROSPECT radiative transfer models at the TONZI Ameriflux Site (Tahoe Box; Foothill Woodland Savanna)

Dinkey Creek Landscape, Sierra National Forest in the Sierra Box, May 2016

6. Document Discovery of Unexpected Condition in Environment

The 2012-2016 California Drought is an unplanned experiment in ecosystem change and resilience

- When (in drought) did individual trees die?
- What was their condition before they died (prior measurements)?
- What was condition of surviving trees?
- What impsvy did prior management actions have on survival or mortality
- What will be the trajectory of recovery?
- What changes in forest composition will occur?