HyspIRI Preparatory Airborne Campaigns

Western US: Diversity

Hawaii: Volcanoes and Coral Reefs

Robert O. Green1 and The HyspIRI Community

1Jet Propulsion Laboratory, California Institute of Technology
Preparatory Measurements to Simulate HyspIRI Flights Over California Based from NASA Armstrong

<table>
<thead>
<tr>
<th></th>
<th>ER-2</th>
<th>AVIRIS</th>
<th>AVIRIS</th>
<th>MASTER</th>
<th>MASTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>65,000 ft</td>
<td>20 m</td>
<td>12 km</td>
<td>50 m</td>
<td>35 km</td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swath</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVIRIS (VSWIR)
- 10 nm spectral resolution
- 224 bands
- 400-2500 nm
- 1 mrad IFOV
- 34 degree FOV

MASTER (TIR)
- 50 bands
- 0.4-13 um
- 2.5 mrad IFOV
- 85.92 degrees FOV
Key HyspIRI Measurements Characteristics

- Global terrestrial and coastal VSWIR spectroscopy at 30 m, 16 days and multispectral TIR at 60 m.
Example 2013 Spring Mosaics

3 Seasons and 3 Years
Original 14 Investigations

<table>
<thead>
<tr>
<th>PI</th>
<th>Organization</th>
<th>Investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Moorcroft</td>
<td>Harvard</td>
<td>Linking Terrestrial Biosphere Models with Imaging Spectrometry Measurements of Ecosystem Composition, Structure, and Function</td>
</tr>
<tr>
<td>Dar Roberts</td>
<td>UC Santa Barbara</td>
<td>HyspIRI discrimination of plant species and functional types along a strong environmental-temperature gradient</td>
</tr>
<tr>
<td>Philip Townsend</td>
<td>UWI</td>
<td>Measurement of ecosystem metabolism across climatic and vegetation gradients in California for the 2013-2014 NASA AVIRIS/MASTER airborne campaign</td>
</tr>
<tr>
<td>Susan Ustin</td>
<td>UC Davis</td>
<td>Identification of Plant Functional Types By Characterization of Canopy Chemistry Using an Automated Advanced Canopy Radiative Transfer Model</td>
</tr>
<tr>
<td>Matthew Clark</td>
<td>Sonoma State</td>
<td>Spectral and temporal discrimination of vegetation cover across California with simulated HyspIRI imagery</td>
</tr>
<tr>
<td>Bo-Cai Gao</td>
<td>NRL</td>
<td>Characterization and Atmospheric Corrections to the AVIRIS-Classic and AVIRISng Data to Support the HyspIRI Preparatory Airborne Activities</td>
</tr>
<tr>
<td>Bernard Hubbard</td>
<td>USGS</td>
<td>Using simulated HyspIRI data for soil mineral mapping, relative dating and flood hazard assessment of alluvial fans in the Salton Sea basin, Southern California</td>
</tr>
<tr>
<td>George Darrel</td>
<td>UC Riverside</td>
<td>Assessing Relationships Between Urban Land Cover, Surface Temperature, and Transpiration Along a Coastal to Desert Climate Gradient</td>
</tr>
<tr>
<td>Thomas Kampe</td>
<td>NEON</td>
<td>Synergistic high-resolution airborne measurements of ecosystem structure and process at NEON sites in California</td>
</tr>
<tr>
<td>Raphael Kudela</td>
<td>UC Santa Cruz</td>
<td>Using HyspIRI at the Land/Sea Interface to Identify Phytoplankton Functional Types</td>
</tr>
<tr>
<td>Ira Leifer</td>
<td>Bubbleology</td>
<td>Hyperspectral imaging spectroscopic investigation of California natural and anthropogenic fossil methane emissions in the short-wave and thermal infrared</td>
</tr>
<tr>
<td>Shunlin Liang</td>
<td>UMD</td>
<td>Characterizing surface energy budget of different surface types under varying climatic conditions from AVIRIS and MASTER data</td>
</tr>
<tr>
<td>Jan van Aardt</td>
<td>RIT</td>
<td>Investigating the impact of spatially-explicit sub-pixel structural variation on the assessment of vegetation structure from HyspIRI data</td>
</tr>
<tr>
<td>Wendy Calvin</td>
<td>UNV</td>
<td>Energy and Mineral Resources: Surface composition mapping that identifies resources and the changes and impacts associated with their development</td>
</tr>
</tbody>
</table>
Objective
- Determine the impacts of California’s record drought on vegetation species cover and condition.

Approach
- HyspIRI VSWIR data can resolve differences between non-photosynthetic vegetation (NPV) and soil, measure canopy water absorption, and map dominant vegetation species.
- Increased NPV fractional cover indicates senescence and canopy dieback.
- Decreased liquid water thickness, a measure of canopy water content, indicates loss of leaf area and moisture.
- Fractional cover and liquid water were calculated from simulated HyspIRI VSWIR products for 2013 and 2014 (2nd and 3rd year of drought).

Results
- Grassland and coastal sage scrub phenology dominate the short term change in fractional cover and liquid water when comparing April 2013 to June 2013.
- Evergreen chaparral has strong increases in NPV fraction, indicating canopy dieback, when comparing April 2013 to June 2013 and November 2013.
- Rainfall in late February/early March 2014 resulted in (likely temporary) recovery in NPV fraction, but minimal recovery in liquid water.
- Ceanothus is more sensitive to long term drought compared to chamise, but also exhibits more recovery in GV and NPV fractions following rain.

<table>
<thead>
<tr>
<th>Date</th>
<th>NPV</th>
<th>Liquid Water (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1/2013</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>10/18/2013</td>
<td>0.6</td>
<td>1.6</td>
</tr>
<tr>
<td>5/6/2014</td>
<td>0.4</td>
<td>1.0</td>
</tr>
</tbody>
</table>

HyspIRI VSWIR Vegetation Species Mapping Across Seasons
Kenneth Dudley (grad student), Phil Dennison – Univ. of Utah, Dar Roberts – UC Santa Barbara

- **Objective:** Evaluate the ability of imaging spectroscopy data from the HyspIRI Preparatory Campaign to map vegetation species across a range of dates and illumination conditions
 - Imaging spectroscopy contains detailed spectral information that can be used to distinguish vegetation species and functional types
 - Hypothesis: Species can be mapped using a uniform approach even though their phenology varies over space and through time.

- **Key Finding:** A species map retrieval algorithm that accounts for the range of phenological variability in species reflectance can map species as well as any single date classification
 - A single spectral library created from a range of dates can be applied to any date, allowing species mapping without knowing phenological state in advance

Reflectance of different vegetation species vary through time due to vegetation phenology. Subtle spectral differences can be used to distinguish a) Blue Oak from b) Chamise.

A multi-temporal endmember library provides equivalent performance for mapping species compared to single date classifications.
Discriminating Canopy Structural Types from Optical Properties using AVIRIS Data in the Sierra National Forest in Central California, Margarita Huesca Martinez, University of California Davis, Davis, CA, United States

Discriminating plant species across California’s diverse ecosystems using airborne VSWIR and TIR imagery, Susan Meerdink, University of California Santa Barbara, Santa Barbara, CA, United States

Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data, Debosunder Dutta, University of Illinois at Urbana Champaign, Urbana, IL, United States

Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California, Bernard Emanuel Hubbard, USGS, Reston, VA, United States

HyspIRI Measurements of Agricultural Systems in California: 2013-2015, Philip A Townsend, University of Wisconsin, Madison, WI, United States

Mapping land surface energy budget from the AVIRIS and MASTER data, Dongdong Wang and Shunlin Liang, University of Maryland College Park, College Park, MD, United States; Mapping land surface energy budget from the AVIRIS and MASTER data

Monitoring the Impacts of Severe Drought on Plant Species in Southern California Chaparral, Philip D Dennison, University of Utah, Salt Lake City, UT, United States

Multiseasonal Changes in Leaf and Canopy Traits Measured by AVIRIS over Ecosystems with Different Functional Type Characteristics Through the Progressive California Drought 2013-2015, Susan Ustin, University of California Davis, Davis, CA, United States

Multi-temporal Imaging Spectroscopy Analysis for the Identification of Coniferous Forest Mortality Related to Drought Stress in the Central Sierra Nevada, California Zachary Tan, US Forest Service Sacramento, Sacramento, CA, United States; University of California Santa Barbara, Geography, Santa Barbara, CA, United States

Refining atmospheric correction for aquatic remote spectroscopy, David R Thompson, Jet Propulsion Laboratory, Pasadena, CA, United States

Seasonal and Inter-Annual Patterns of Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign, Sherry L. Palacios, NASA Ames Research Center, Moffett Field, CA, United States; Bay Area Environmental Research Institute Moffett Field, Moffett Field, CA, United States

Spectral Age Dating of Volcanic Materials, Neil Pearson, University of Nevada Reno, Reno, NV, United States

Urban Heat Island Variation across a Dramatic Coastal to Desert Climate Zone: An Application to Los Angeles, CA Metropolitan Area, Amin Tayyebi, University of California Riverside, Center for Conservation Biology, Riverside, CA, United States and Darrel Jenerette, University of California Riverside, Riverside, CA, United States

Using HyspIRI Campaign Data for Sub-pixel Classification of the Urban Land Surface, Erin B Wetherley, University of California Santa Barbara, Santa Barbara, CA, United States

Using Imaging Spectrometry to Identify Crops in California’s Central Valley, Sarah Shivers, University of California Santa Barbara, Santa Barbara, CA, United States

Assessment of Forest Vulnerability to Climate Change from Imaging Spectroscopy, Gregory Paul Asner, Carnegie Institution for Science, Department of Global Ecology, Stanford, CA, United States and Carnegie Airborne Observatory Team

Constructing Virtual Forest Scenes for Assessment of Sub-pixel Vegetation Structure From Imaging Spectroscopy, Wei Yao, Rochester Institute of Technology, Rochester, NY, United States and Jan A van Aardt, Rochester Institute of Technology, Rochester, NY, United States

A Hyperspectral Thermal Emission Spectrometer (HyTES) for High Altitude Applications, Jonathan M Mihaly, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States

Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA, Robert O Green, NASA Jet Propulsion Laboratory, Pasadena, CA, United States

Characterizing Geology and Mineralization at High Latitudes in Alaska Using Airborne and Field-Based Imaging Spectrometer Data, Raymond F Kokaly, US Geological Survey, Denver, CO, United States

Comparison of Hyperspectral and Multispectral Satellites for Discriminating Land Cover in Northern California, Matthew L Clark, Sonoma State University, Rohnert Park, CA, United States

Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function, Eric J Hochberg, Bermuda Institute of Ocean Sciences, St George’s, GE, Bermuda

Finding Blackbody Temperature and Emissivity on a Sub-Pixel Scale, David Jonathan Bernstein, Purdue University, West Lafayette, IN, United States

Hyperspectral analysis for qualitative and quantitative features related to acid mine drainage at a remediated open-pit mine, Gwen Davies, University of Nevada Reno, Reno, NV, United States

Hyperspectral and Polariometric Signatures of Vegetation from AirMSPI and AVIRIS Measurements, Bin Yang, Boston University, Boston, MA, United States

Overview of the technical and scientific status of the EnMAP imaging spectroscopy mission, Luis Guanter, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany

Using high-resolution topography and hyperspectral data to classify tree species at the San Joaquin Experimental Range, Steven Daniel Dibb, University of California Santa Cruz, Santa Cruz, CA, United States

A Linear Spatial Spectral Mixture Model for the Improved Estimation of Subpixel Saltcedar Cover along the Forgotten River, Chen Shi, CNU Capital Normal University, College of Resource Environment and Tourism, Beijing, China

Field-Based and Airborne Hyperspectral Imaging for Applied Research in the State of Alaska, Anupma Prakash, University of Alaska Fairbanks, Fairbanks, AK, United States

Discriminating Canopy Structural Types from Optical Properties using AVIRIS Data in the Sierra National Forest in Central California, Margarita Huesca Martinez, University of California Davis, Davis, CA, United States

Discriminating plant species across California’s diverse ecosystems using airborne VSWIR and TIR imagery, Susan Meerdink, University of California Santa Barbara, Santa Barbara, CA, United States

Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data, Debosunder Dutta, University of Illinois at Urbana Champaign, Urbana, IL, United States

Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California, Bernard Emanuel Hubbard, USGS, Reston, VA, United States

HyspIRI Measurements of Agricultural Systems in California: 2013-2015, Philip A Townsend, University of Wisconsin, Madison, WI, United States

Mapping land surface energy budget from the AVIRIS and MASTER data, Dongdong Wang and Shunlin Liang, University of Maryland College Park, College Park, MD, United States; Mapping land surface energy budget from the AVIRIS and MASTER data

Monitoring the Impacts of Severe Drought on Plant Species in Southern California Chaparral, Philip D Dennison, University of Utah, Salt Lake City, UT, United States

Multiseasonal Changes in Leaf and Canopy Traits Measured by AVIRIS over Ecosystems with Different Functional Type Characteristics Through the Progressive California Drought 2013-2015, Susan Ustin, University of California Davis, Davis, CA, United States

Multi-temporal Imaging Spectroscopy Analysis for the Identification of Coniferous Forest Mortality Related to Drought Stress in the Central Sierra Nevada, California Zachary Tan, US Forest Service Sacramento, Sacramento, CA, United States; University of California Santa Barbara, Geography, Santa Barbara, CA, United States

Refining atmospheric correction for aquatic remote spectroscopy, David R Thompson, Jet Propulsion Laboratory, Pasadena, CA, United States

Seasonal and Inter-Annual Patterns of Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign, Sherry L. Palacios, NASA Ames Research Center, Moffett Field, CA, United States; Bay Area Environmental Research Institute Moffett Field, Moffett Field, CA, United States

Spectral Age Dating of Volcanic Materials, Neil Pearson, University of Nevada Reno, Reno, NV, United States

Urban Heat Island Variation across a Dramatic Coastal to Desert Climate Zone: An Application to Los Angeles, CA Metropolitan Area, Amin Tayyebi, University of California Riverside, Center for Conservation Biology, Riverside, CA, United States and Darrel Jenerette, University of California Riverside, Riverside, CA, United States

Using HyspIRI Campaign Data for Sub-pixel Classification of the Urban Land Surface, Erin B Wetherley, University of California Santa Barbara, Santa Barbara, CA, United States

Using Imaging Spectrometry to Identify Crops in California’s Central Valley, Sarah Shivers, University of California Santa Barbara, Santa Barbara, CA, United States

Assessment of Forest Vulnerability to Climate Change from Imaging Spectroscopy, Gregory Paul Asner, Carnegie Institution for Science, Department of Global Ecology, Stanford, CA, United States and Carnegie Airborne Observatory Team

Constructing Virtual Forest Scenes for Assessment of Sub-pixel Vegetation Structure From Imaging Spectroscopy, Wei Yao, Rochester Institute of Technology, Rochester, NY, United States and Jan A van Aardt, Rochester Institute of Technology, Rochester, NY, United States

A Hyperspectral Thermal Emission Spectrometer (HyTES) for High Altitude Applications, Jonathan M Mihaly, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States

Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA, Robert O Green, NASA Jet Propulsion Laboratory, Pasadena, CA, United States

Characterizing Geology and Mineralization at High Latitudes in Alaska Using Airborne and Field-Based Imaging Spectrometer Data, Raymond F Kokaly, US Geological Survey, Denver, CO, United States

Comparison of Hyperspectral and Multispectral Satellites for Discriminating Land Cover in Northern California, Matthew L Clark, Sonoma State University, Rohnert Park, CA, United States

Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function, Eric J Hochberg, Bermuda Institute of Ocean Sciences, St George’s, GE, Bermuda

Finding Blackbody Temperature and Emissivity on a Sub-Pixel Scale, David Jonathan Bernstein, Purdue University, West Lafayette, IN, United States

Hyperspectral analysis for qualitative and quantitative features related to acid mine drainage at a remediated open-pit mine, Gwen Davies, University of Nevada Reno, Reno, NV, United States

Hyperspectral and Polariometric Signatures of Vegetation from AirMSPI and AVIRIS Measurements, Bin Yang, Boston University, Boston, MA, United States

Overview of the technical and scientific status of the EnMAP imaging spectroscopy mission, Luis Guanter, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany

Using high-resolution topography and hyperspectral data to classify tree species at the San Joaquin Experimental Range, Steven Daniel Dibb, University of California Santa Cruz, Santa Cruz, CA, United States

A Linear Spatial Spectral Mixture Model for the Improved Estimation of Subpixel Saltcedar Cover along the Forgotten River, Chen Shi, CNU Capital Normal University, College of Resource Environment and Tourism, Beijing, China

Field-Based and Airborne Hyperspectral Imaging for Applied Research in the State of Alaska, Anupma Prakash, University of Alaska Fairbanks, Fairbanks, AK, United States
Forest Service use of Measurements from HyspIRI Airborne Campaign

This map represents a time-series analysis of images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS; http://aviris.jpl.nasa.gov/) from Spring 2013 to Fall 2015. Mortality for Summer 2015 was manually interpreted from Worldview imagery from Spring - Summer 2015 and used for the training the statistical-learning classifier. Landcover was classified into shrub dominant, green conifer dominant, and newly killed (red-attack) conifer dominant. Spectral mixture analysis was used to evaluate the Fall 2015 mortality by comparing 2013 - 2015 changes in the cover fractions and flagging changes greater than 10% in the non-photosynthetic vegetation fraction in Fall 2015 imagery.

Vegetative Condition (below 2,200 m elevation)
- Green conifer
- Spike in dead vegetation - summer 2015 to Fall 2015
- >50% red-attack conifer mortality
Dimensionality of the Earth System Captured with Imaging Spectroscopy

A single HyspIRI airborne campaign flight line has 50 content rich eigen images.

A single scene show up to 30 content rich eigen images.

This demonstrates huge dimensionality available for access with imaging spectroscopy for new Earth system science.
Some HyspiIRI Related Papers

A.45 HyspIRI Preparatory Airborne Activities and Associated Science: Coral Reef and Volcano Research
- 10 investigations selected
- Test Level 1 and 2 products for VSWIR and TIR HyspIRI-type measurement
- Advance maturity of higher level products and related algorithms
<table>
<thead>
<tr>
<th>Research Team</th>
<th>Institution/University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Ackleson/Naval Research Laboratory</td>
<td>Assessing Simulated HyspIRI Imagery for Detecting and Quantifying Coral Reef Coverage and Water Quality Using Spectral Inversion and Deconvolution Methods</td>
</tr>
<tr>
<td>Kyle Cavanaugh/University of California, Los Angeles</td>
<td>Using HyspIRI to Identify Benthic Composition and Bleaching in Shallow Coral Reef Ecosystems</td>
</tr>
<tr>
<td>Chad Deering/Michigan Technological University</td>
<td>Understanding Basaltic Volcanic Processes by Remotely Measuring the Links Between Vegetation Health and Extent, and Volcanic Gas and Thermal Emissions Using HyspIRI-Like VSWIR and TIR Data</td>
</tr>
<tr>
<td>Paul Haverkamp/SP Cramer and Associates</td>
<td>Modeling of Environmental Variables and Land-Use/Land-Cover Change Influence on Declining Hawaiian Coral Reef Health Since 2000 Using HyspIRI-Like Images</td>
</tr>
<tr>
<td>Eric Hochberg/Bermuda Institute of Ocean Science (BIOS), Inc.</td>
<td>Coral Reef Condition Across the Hawaiian Archipelago and Relationship to Environmental Forcing</td>
</tr>
<tr>
<td>ZhongPing Lee/University of Massachusetts, Boston</td>
<td>Evaluation and Application of the AVIRIS Data for the Study of Coral Reefs</td>
</tr>
<tr>
<td>David Pieri/Jet Propulsion Laboratory</td>
<td>In Situ Validation of Remotely Sensed Volcanogenic Emissions Retrievals Using Aerostats and UAVs</td>
</tr>
<tr>
<td>Michael Ramsey/University of Pittsburgh</td>
<td>Quantifying Active Volcanic Processes and Mitigating their Hazards With HyspIRI Data</td>
</tr>
<tr>
<td>Vincent Realmuto/Jet Propulsion Laboratory</td>
<td>Mapping the Composition and Chemical Evolution of Plumes from Kilauea Volcano</td>
</tr>
</tbody>
</table>
2000 Coral Spectroscopy Measurements

- Composition
- Condition
- Productivity
- Bathymetry
- Water quality

AVIRIS Image of Kaneohe Bay, HI
Classification of the bottom of coastal zones and coral reef types
HyspIRI Related Inputs to Decadal RFI2
Many Tied to Airborne Campaigns

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wendy Calvin</td>
<td>Earth Surface Geochemistry and Mineralogy: Processes, Hazards, Soils, and Resources</td>
</tr>
<tr>
<td>Philip Dennison</td>
<td>Global Measurement of Non-Photosynthetic Vegetation</td>
</tr>
<tr>
<td>Heidi Dierssen</td>
<td>Assessing Transient Threats and Disasters in the Coastal Zone with Airborne Portable Sensors</td>
</tr>
<tr>
<td>Riley Duren</td>
<td>Understanding anthropogenic methane and carbon dioxide point source emissions</td>
</tr>
<tr>
<td>Robert Green</td>
<td>Science and Application Targets Addressed with the 2007 Decadal Survey HyspIRI Mission Current Baseline</td>
</tr>
<tr>
<td>Eric Hochberg</td>
<td>Coral Reefs: Living on the Edge</td>
</tr>
<tr>
<td>Simon Hook</td>
<td>Carbon Emissions from Biomass Burning</td>
</tr>
<tr>
<td>Luvall Jeffrey</td>
<td>A Thermodynamic Paradigm For Using Satellite Based Geophysical Measurements For Public Health Applications</td>
</tr>
<tr>
<td>Natalie Mahowald</td>
<td>Measuring the Earth's Surface Mineral Dust Source Composition for Radiative Forcing and Related Earth System Impacts</td>
</tr>
<tr>
<td>Frank Muller-Karger</td>
<td>Monitoring Coastal and Wetland Biodiversity from Space</td>
</tr>
<tr>
<td>Thomas Painter</td>
<td>Understanding the controls on cryospheric albedo, energy balance, and melting in a changing world</td>
</tr>
<tr>
<td>Ryan Pavlick</td>
<td>Biodiversity</td>
</tr>
<tr>
<td>Dale Quattrochi</td>
<td>High Spatial, Temporal, and Spectral Resolution Instrument for Modeling/Monitoring Land Cover, Biophysical, and Societal Changes in Urban Environments</td>
</tr>
<tr>
<td>E. Natasha Stavros</td>
<td>The role of fire in the Earth System</td>
</tr>
<tr>
<td>Philip Townsend</td>
<td>Global Terrestrial Ecosystem Functioning and Biogeochemical Processes</td>
</tr>
<tr>
<td>Kevin Turpie</td>
<td>GLOBAL OBSERVATIONS OF COASTAL AND INLAND AQUATIC HABITATS</td>
</tr>
<tr>
<td>Robert Wright</td>
<td>PREDICTING CHANGES IN THE BEHAVIOR OF ERUPTING VOLCANOES, AND REDUCING THE UNCERTAINTIES ASSOCIATED WITH THEIR IMPACT ON SOCIETY AND THE ENVIRONMENT</td>
</tr>
</tbody>
</table>