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Atmospheric 
correction is 
fundamental!
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Raw	Digital	
Numbers	

Radiance	at	
sensor		
mW/nm/cm2/sr	

Lamber9an	
Reflectance	
(HDRF)	

[Gao	et	al.,	1993;	
Green	et	al.,	1998,	
Thompson	et	al.,	2015]	



Traditionally bifurcated into 
RTM and empirical methods!
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RTM	(model-based)	 Empirical	
•  No in-situ 

measurements 
needed!

•  Stable and 
physically 
Interpretable!

•  Can be inaccurate if 
model assumptions 
are violated!

•  Highly accurate when 
provided many in situ 
spectra!

•  Tedious field 
measurements!

•  Unstable with few 
spectra!

•  Heterogeneity 
assumption!



Reflectance	spectrum	
	
	
	
	RTM 

approaches!

Top	of	atmosphere	
apparent	reflectance	ρ	

	
	
	
	

Aerosol	transmission	TdTu,	
Spherical	sky	albedo	s,	
Path	reflectance	ra	

Gaseous	
transmission	Tg	

Calculate	molecular	&	
aerosol	scaSering	w/6s	
radia;ve	transfer	code	

Retrieve	pressure	
al;tude,	H2O	vapor,	
liquid	by	fiWng	
absorp;on	features		

Aerosol	par;cle	type	
distribu;on,	
AOD	at	550nm	
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Solar	spectrum	F	
(modified	Kurucz)		

Corrected	reflectance	
spectrum	

Residual	suppression	based	on	a	reference	target	



The classical 
empirical line!
Uses in-situ 
measurements to fit a 
linear transformation"
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Data	matrix	
with	radiances	 Reference	

spectra	

Linear	
correc;on	



Examples!
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RTMs	 Empirical	
•  ATREM !
•  ACORN !
•  MODTRAN-based 

methods!
•  HyspIRI Level 2 

product !
•  Spectral polishing!

•  Empirical line!
•  Modified empirical 

line [Moran et al., 
2006]!

!



Toward a unified approach!
•  Model-based methods can be sensitive 

to aerosol uncertainty and minor model 
approximations!
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Toward a unified approach!
•  Model-based methods can be sensitive 

to aerosol uncertainty and minor model 
approximations!

•  But we often lack enough in-situ spectra 
for an empirical correction!
– Aquatic environments !
– Regional or global investigations!
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Toward a unified approach!
•  Model-based methods can be sensitive 

to aerosol uncertainty and minor model 
approximations!

•  But we often lack enough in-situ spectra 
for an empirical correction!
– Aquatic environments !
– Regional or global investigations!

•  Can we unify model-based and empirical 
methods, achieving benefits of both?!
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The idea: apply RTM, then 
perform empirical adjustment!
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The idea: apply RTM, then 
perform empirical adjustment!
Transforming to reflectance means empirical 
correction factors are predictable!



The idea: apply RTM, then 
perform empirical adjustment!
Transforming to reflectance means empirical 
correction factors are predictable!
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Empirically-derived correction 
factors are highly scene-dependent !

Empirically-derived correction 
factors are predictable (centered 
on the identity)!



Specifically, use the model-based solution to 
define a Bayesian prior on correction 
coefficients!

8/11/16	 HyspIRI	Science	Symposium,	October	2015	 12	

p(θ)	 p(x|θ)	

Prior	 Data	Likelihood	

The idea: apply RTM, then 
perform empirical adjustment!



Specifically, use the model-based solution to 
define a Bayesian prior on correction 
coefficients!
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p(θ)	 p(x|θ)	p(x,θ)	

Prior	 Data	Likelihood	Posterior	

The idea: apply RTM, then 
perform empirical adjustment!



Classical empirical line!
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Bayesian empirical line!

Data	matrix	
with	radiances	

Reference	
spectra	

Linear	
correc;on	

Data	matrix	with	
reflectances	

Reference	
spectra	

Linear	
correc;on	

Gaussian	prior	on	
correc;on	coefficients,	
centered	on	iden9ty	



Classical empirical line:  
Ordinary linear least squares!
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Bayesian empirical line: !
Generalized Tikhonov Regression!

See	Mead,	J.	L.	in	Journal	of	Inverse	and	Ill-posed	Problems,	16(2),	2008	



DISORT simulation!
•  Simulated atmospheric interference and correction 

using the standard relation:!

•  Introduced errors from two sources:!
–  Perturbed TOA spectrum by a gain and offset, 

simulating errors in atmospheric model!
–  Random white measurement noise!

•  Used 20 references of varying brightness from the 
USGS spectral library!
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Atmospheric Correction with the Bayesian Empirical Line

David R. Thompson1, Dar A. Roberts2, Bo Cai Gao3, Robert O. Green1, Liane
Guild4, Kendra Hayashi5, Raphael Kudela5, Sherry Palacios4,6

Atmospheric correction of visible/infrared spectra is tra-
ditionally bifurcated into (1) model-based approaches us-
ing Radiative Transfer Models (RTMs), and (2) empirical
methods using in situ measurements. We present a general
formulation that encompasses both approaches and enables
combined solutions. First, we use a model-based solution to
define a prior distribution over correction coe�cients. We
use Bayesian inference to incorporate field reflectance mea-
surements, leading to a result which is generally more accu-
rate than pure model-based solutions yet more stable than
pure empirical solutions. It improves results in demanding
environments where few field measurements are available,
such as aquatic applications. We demonstrate performance
in atmospheric simulations and historical data sets from the
“Classic” Airborne Visible Infrared Imaging Spectrometer
(AVIRIS-C) acquired during the HypspIRI mission prepara-
tory campaign.

1. Introduction

Remote visible/infrared reflectance spectroscopy provides
unique insight into the structure and health of Earth’s
ecosystems. These investigations measure radiance at many
wavelengths, �, and then correct atmospheric interference
to retrieve the apparent surface reflectance, the Hemispher-
ical Directional Reflectance Function (HDRF) ⇢(�), or the
related quantity, Remote Sensing Reflectance Rrs(�). Typ-
ically they perform an atmospheric correction using Radia-
tive Transfer Models (RTMs), an approach which is e↵ective
but can be vulnerable to uncertainty in atmospheric gas and
aerosol state. Consequently, empirical methods play a com-
plementary role for di�cult atmospheric conditions.

The empirical line method is one such approach that uses
in situ measurements of spectrally-invariant surface targets
to fit a linear relationship between sensor readings and re-
flectance. This requires visiting and measuring many dis-
tinct locations in the scene. Assuming invariant targets can
be found, di↵erences in remote and in situ perspectives can
still cause discrepancies due to atmospheric and surface het-
erogeneity and the interaction of solar angle with self shad-
ing and non-Lambertian Bidirectional Reflectance Distribu-
tion Functions (BRDFs). Overcoming such discrepancies
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requires tedious measurements from many diverse surfaces.
Aquatic scenes are particularly di�cult due to the challenges
of measuring reflectance from open water. With few in situ
references, the resulting corrections can be unstable and sen-
sitive to confounding e↵ects.

This article describes a more general formulation that
encompasses RTM and empirical methods, enabling com-
bined solutions that improve performance. We treat the
RTM solution as a Bayesian prior on correction coe�cients.
It places data in a reflectance representation so that sub-
sequent correction factors follow a predictable distribution.
Generalized Tikhonov regularization constrains divergence
from the prior. This significantly improves results when ref-
erence spectra are sparse, poorly conditioned or inaccurate.

This article begins by reviewing standard atmospheric
correction methods. We describe the proposed approach,
and explore its behavior with radiative transfer simulations.
Finally, we test its performance on a set of reference mea-
surements acquired by NASA’s “Classic” Airborne Visi-
ble Infrared Imaging Spectrometer (AVIRIS-C) during the
HyspIRI mission airborne preparatory campaign. [Thomp-
son et al., 2015a].

2. Background

Traditional atmospheric correction algorithms like AT-
COR [Richter and Schläpfer , 2005], FLAASH [Matthew
et al., 2002], and ATREM [Gao and Goetz , 1990; Gao et al.,
1993], exploit a relation between the surface reflectance ⇢,
the atmospheric path reflectance ⇢a, and the top of atmo-
sphere reflectance ⇢0 [A. Berk , 2013]:

⇢0 =
⇡L

Fcos( )
= ⇢a +

T⇢

1� ⇢S

(1)

Here F represents extra-terrestrial solar irradiance [Kneizys
et al., 1988],  the solar zenith, T the transmission of gases
and aerosols, and S the spherical albedo of the sky. One such
relationship exists for each wavelength, though our notation
omits this for clarity. Typically T , ⇢a and S are calculated
using a radiative transfer solver such as 6s [Vermote et al.,
1997; Teillet , 1989; Tanré et al., 1990] or DISORT [Stamnes
et al., 1988]. Some atmospheric and surface parameters may
be retrieved on a per-pixel basis using spectral information
[Guanter et al., 2006; Thompson et al., 2015a].

Any inaccuracy in models of gas absorption or calibra-
tion can leave residual errors in the reflectance estimate.
These errors have been addressed by a range of di↵erent
postprocessing methods. One approach, EFFORT [Board-
man, 1998], “polishes” the spectra using a generalized set
of reference spectra to quantify and suppress the high fre-
quency noise component of retrievals Gao and Liu [2013].
The ATCOR atmosperhic correction package can classify
pixels into plant, snow, soil or other surfaces, then apply ap-
propriate band-by-band multiplicative factors to reduce the
high frequency noise that discriminates the retrieval from
the ideal spectrum. Similar methods based on multiplicative
coe�cients have been used throughout the HyspIRI prepara-
tory campaign [Thompson et al., 2015a]. These factors can

1

Spherical	sky	albedo	

Transmission	
	
Reflectance	

Path	Reflectance	
Top	Of	Atmosphere	

Reflectance	
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DISORT simulation results!
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smooth residual roughness in reflectance estimates, but do
not typically compensate for broad spectral features from
calibration or scattering e↵ects.

In contrast to RTMs, the empirical line method [Smith
and Milton, 1999] posits a direct relationship ⇢ = x1 + x2L,
with free parameters x1 and x2. Here for simplicity we com-
bine correction coe�cients into a vector x = [x1, x2]

T and
introduce a data matrix A with one row Ai = [1, Li] per
reference location i. Thus, ⇢ = Ax. A target vector t repre-
sents target reflectance spectra measured in situ. The best
correction coe�cients, written xel, are those which minimize
squared error:

xel = argmin
x

�
kAx� tk2

�
= (AT

A)�1
A

T
t (2)

The classical solution does not constrain the magnitude of
the correction, which is appropriate because the numerical
scaling is highly variable and scene-dependent.

Some proposed hybrid methods combine RTMs and em-
pirical elements. Teilliet et al. [Teillet and Fedosejevs, 1995]
use an in-scene dark target to estimate the energy scattered
into the beam. This provides an estimate of ⇢a, while an
RTM calculates the other terms. Moran et al. [Moran et al.,
2001] start with the empirical line method, but then use at-
mospheric radiative transfer models or dark targets to esti-
mate the additive term x1. This leaves one free parameter,
x2, to be fit by reference targets, improving stability and
accuracy [Moran et al., 2001]. However, in principle both in-
situ references and models provide some information about
the whole system; a handful of in situ reference targets may
be insu�cient, but the empirical estimate will eventually
outperform as more field measurements are added. An opti-
mal solution would incorporate all information with appro-
priate weight to empirical and data driven methods based
on the certainty of each source.

3. Approach

Bayesian inference provides a formal framework for com-
bining RTM calculations and in situ measurements. The
proposed approach uses an RTM, informed by known ob-
serving geometry and an estimate of atmospheric state, ✓,
to calculate an initial guess ⇢̂. The resulting data matrix B

consists of rows Bi = [1, ⇢̂i] in reflectance units. We posit
correction factors are distributed about the identity trans-
formation, given by a coe�cient vector µ = [0, 1] such that:

⇢̂i = B

i

µ = [1, ⇢̂i] [0, 1]
T (3)

More generally, the linear coe�cients x have a Gaussian
prior N (µ,Q�1) with mean µ and covariance matrix Q

�1,
and errors distributed as N (0,P�1). Bayes’ rule gives:

p(⇢i,x|✓) / p(⇢i|x, ✓)p(x|✓)
/ p(⇢i|x)p(x|✓)

log p(⇢i,x|✓) / �z1(Bx� t)TP(Bx� t)�
z2(x� µ)TQ(x� µ) (4)

Here z1 and z2 are normalizing constants. Generalized
Tikhonov Regression [Hansen, 1994] finds the xgtr that min-
imizes the associated squared error:

xgtr = argmin
x

�
kBx� tk2

P

+ k(x� µ)k2
Q

�
(5)

Here kxk2
Q

signifies the norm x

T
Qx, and kxk2

P

is the norm
x

T
Px. This formulation penalizes correction coe�cients

that depart from the RTM prior. It has a Bayesian in-
terpretation as a Maximum A Posteriori (MAP) estimator,

maximizing the posterior density of the Gaussian prior and

Gaussian data likelihood terms. The solution has closed

form [Mead , 2008]:

xgtr = µ+ (BT
PB+Q)�1

B

T
P(t�Bµ) (6)

We take the covariance Q

�1 to be a diagonal matrix of reg-

ularization factors �. We estimate a diagonal P�1 using the

sample variance. In summary, the procedure is:

1. Using a RTM-based atmospheric correction, transform

each reference location’s radiance Li to an estimate of sur-

face reflectance, ⇢̂i
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Figure 1. Performance as a function of the regular-
ization factor � and number of reference spectra. The
empirical solution is favorable as more reference spectra
become available.
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Figure 2. DISORT simulations compare multiple cor-
rection methods: the traditional empirical line (EL);
the refined empirical line of Moran et al. [2001] (REL);
spectral polishing (SP); and the Bayesian empirical line
correction (BEL). Arrowheads indicate 1-� error bars
and/or performance means that lie beyond the plotted
area. We omitted several error bars for trials where the
solutions were o↵-chart due to numerical instability.

Regulariza;on	factor	(diagonal	of	prior	precision	matrix)	
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DISORT simulation results:  
20 reference targets!
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smooth residual roughness in reflectance estimates, but do
not typically compensate for broad spectral features from
calibration or scattering e↵ects.

In contrast to RTMs, the empirical line method [Smith
and Milton, 1999] posits a direct relationship ⇢ = x1 + x2L,
with free parameters x1 and x2. Here for simplicity we com-
bine correction coe�cients into a vector x = [x1, x2]

T and
introduce a data matrix A with one row Ai = [1, Li] per
reference location i. Thus, ⇢ = Ax. A target vector t repre-
sents target reflectance spectra measured in situ. The best
correction coe�cients, written xel, are those which minimize
squared error:

xel = argmin
x

�
kAx� tk2

�
= (AT

A)�1
A

T
t (2)

The classical solution does not constrain the magnitude of
the correction, which is appropriate because the numerical
scaling is highly variable and scene-dependent.

Some proposed hybrid methods combine RTMs and em-
pirical elements. Teilliet et al. [Teillet and Fedosejevs, 1995]
use an in-scene dark target to estimate the energy scattered
into the beam. This provides an estimate of ⇢a, while an
RTM calculates the other terms. Moran et al. [Moran et al.,
2001] start with the empirical line method, but then use at-
mospheric radiative transfer models or dark targets to esti-
mate the additive term x1. This leaves one free parameter,
x2, to be fit by reference targets, improving stability and
accuracy [Moran et al., 2001]. However, in principle both in-
situ references and models provide some information about
the whole system; a handful of in situ reference targets may
be insu�cient, but the empirical estimate will eventually
outperform as more field measurements are added. An opti-
mal solution would incorporate all information with appro-
priate weight to empirical and data driven methods based
on the certainty of each source.

3. Approach

Bayesian inference provides a formal framework for com-
bining RTM calculations and in situ measurements. The
proposed approach uses an RTM, informed by known ob-
serving geometry and an estimate of atmospheric state, ✓,
to calculate an initial guess ⇢̂. The resulting data matrix B

consists of rows Bi = [1, ⇢̂i] in reflectance units. We posit
correction factors are distributed about the identity trans-
formation, given by a coe�cient vector µ = [0, 1] such that:

⇢̂i = B

i

µ = [1, ⇢̂i] [0, 1]
T (3)

More generally, the linear coe�cients x have a Gaussian
prior N (µ,Q�1) with mean µ and covariance matrix Q

�1,
and errors distributed as N (0,P�1). Bayes’ rule gives:

p(⇢i,x|✓) / p(⇢i|x, ✓)p(x|✓)
/ p(⇢i|x)p(x|✓)

log p(⇢i,x|✓) / �z1(Bx� t)TP(Bx� t)�
z2(x� µ)TQ(x� µ) (4)

Here z1 and z2 are normalizing constants. Generalized
Tikhonov Regression [Hansen, 1994] finds the xgtr that min-
imizes the associated squared error:

xgtr = argmin
x

�
kBx� tk2

P

+ k(x� µ)k2
Q

�
(5)

Here kxk2
Q

signifies the norm x

T
Qx, and kxk2

P

is the norm
x

T
Px. This formulation penalizes correction coe�cients

that depart from the RTM prior. It has a Bayesian in-
terpretation as a Maximum A Posteriori (MAP) estimator,

maximizing the posterior density of the Gaussian prior and

Gaussian data likelihood terms. The solution has closed

form [Mead , 2008]:

xgtr = µ+ (BT
PB+Q)�1

B

T
P(t�Bµ) (6)

We take the covariance Q

�1 to be a diagonal matrix of reg-

ularization factors �. We estimate a diagonal P�1 using the

sample variance. In summary, the procedure is:

1. Using a RTM-based atmospheric correction, transform

each reference location’s radiance Li to an estimate of sur-

face reflectance, ⇢̂i
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Figure 1. Performance as a function of the regular-
ization factor � and number of reference spectra. The
empirical solution is favorable as more reference spectra
become available.
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Figure 2. DISORT simulations compare multiple cor-
rection methods: the traditional empirical line (EL);
the refined empirical line of Moran et al. [2001] (REL);
spectral polishing (SP); and the Bayesian empirical line
correction (BEL). Arrowheads indicate 1-� error bars
and/or performance means that lie beyond the plotted
area. We omitted several error bars for trials where the
solutions were o↵-chart due to numerical instability.

SP:	Spectral	Polishing	
EL:	Empirical	Line	
MEL:	Modified	Empirical	Line		

		(Moran	et	al.,	2006)	
BEL:	Bayesian	Empirical	Line	
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Two case studies with real data!
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2. Associate the remote and in-situ spectra, and con-
struct a data matrix B with one row Bi = [1, ⇢̂i] per in
situ measurement ti.

3. Construct a 2⇥ 2 covariance matrix Q

�1 comprised of
small diagonal coe�cients �; this represents the certainty of
atmospheric correction.

4. Construct a diagonal covariance matrix P

�1 represent-
ing measurement variance for each remote spectrum.

5. Use Equation 6 to find linear correction coe�cients
xgtr = [x1, x2]

T .
6. Use the linear correction coe�cients to correct all

RTM-derived reflectance estimates using ⇢

0 = x1 + x2⇢̂

This procedure is performed separately for each wave-
length.

4. Evaluation

We performed several experiments comparing the
Bayesian approach to alternative methods. We first char-
acterized performance in simulation with 20 visible/infrared
spectra from the USGS spectral library [Clark et al., 2007].
These spectra spanned a diverse range of shapes and mag-
nitudes, including urban surfaces such as asphalt and build-
ing materials as well as natural surfaces such as vegeta-
tion, open water, snow, and mixtures of vegetation and soil.
We resampled these spectra to the wavelengths of NASA’s
“Classic” Airborne Visible Infrared Imaging Spectrometer
(AVIRIS-C) and simulated atmospheric interference using
the DISORT radiative transfer model [Stamnes et al., 1988].
This estimated the absorption and scattering by a typical
20 layer midlatitude summer atmosphere, with absorption
and aerosol parameterizations from the LibRadTran suite
[Mayer and Kylling , 2005].

We perturbed the resulting top of atmosphere radiances
by two error sources. The first was a random gain and o↵-
set representing systematic error due to uncertainty in at-
mospheric constituents and instrument calibration. These
perturbations were randomly generated for each scene fol-
lowing a zero-mean normal distribution inside the typical
range of radiometric calibration accuracy for imaging spec-
trometers in the visible/infrared range. The second source
of error was Gaussian-distributed gain and o↵set signifying
error sources such as measurement noise that were indepen-
dent in each spectrum. We found the relative performance
of di↵erent correction strategies was generally insensitive to
the magnitude of these perturbations.

After introducing these errors, we simulated the correc-
tion process of Equation 1 and applied the Bayesian empiri-
cal line adjustment. We selected 1 to 5 in situ reference spec-
tra as the training set, and calculated prediction accuracy
on the held-out remainder based on the Root Mean Squared
Error (RMSE) while ignoring water absorption bands. For
each number of reference spectra, the di↵erent possible com-
binations of training and testing samples defined a mean and
standard deviation for performance.

Figure 1 illustrates the e↵ect of changing the regulariza-
tion parameters to favor RTM or empirical behavior. In
this simulation, we used expected (1�) inaccuracies at 2%
of the signal. Some degree of Bayesian regularization al-
ways outperformed the pure methods. In other words, even
single reference target or an error-prone atmospheric model
provided some beneficial information. As the number of
reference spectra increased, the certainty of the empirical
correction improved and larger values of � became optimal.
However, there was always significant benefit to incorporat-
ing a model prediction. The regularized empirical line was
stable over a wide parameter range; performance degraded
appreciably only when values of � departed from the opti-
mum by a factor of five or more.

Figure 2 compares the relative performance of the pure
empirical line, spectral polishing ?, and the hybrid correc-
tion strategy of Moran et al. [Moran et al., 2001]. We use
1� perturbations at 1% of the total signal level. The fig-
ure shows 1-� error bars, with delta symbols at the top
where performance lies beyond the plotted area. Arrows
on error bars signify 1�sigma intervals beyond the plotted
area. The classical empirical line was numerically stable
after three training spectra, and approached the optimum
after five. The refined empirical line approached asymp-
totic error with about three training targets. The Bayesian
approach, exploiting both model and in situ information,
outperformed all alternatives while reducing the standard
deviation for all training set sizes. It provided a consistent
non-degenerate solution from a single training spectrum.

Our second evaluation used airborne data: the ATREM-
derived HyspIRI preparatory reflectance product [Thomp-
son et al., 2015a]. This algorithm typified the RTM ap-
proach. We considered multiple reference targets imaged by
AVIRIS-C during flights over California during the HyspIRI
mission preparatory campaign [Thompson et al., 2015a]
(Figure 3). Eight terrestrial reference targets fell within a
single long flightline from the 2013 data collection year, the
“Soda Straw” spanning several degrees of latitude across
the state of California. The targets included a range of light
and dark surfaces at varying altitudes (Figure 4). The re-
flectance profiles were measured in situ using a Visible Short-
wave Infrared (VSWIR) field spectrometer and a reference
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Figure 3. The reference spectra in our AVIRIS-C study
lie in two flightlines in the US state of California.
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Figure 4. Reference spectra used in the AVIRIS-C eval-
uation. (a) Bright surface (b) Bare rock (c) Bare rock (d)
Roof (e) Boat ramp (f) Church parking lot (g) Soccer field
(h) USDA parking lot.
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2. Associate the remote and in-situ spectra, and con-
struct a data matrix B with one row Bi = [1, ⇢̂i] per in
situ measurement ti.

3. Construct a 2⇥ 2 covariance matrix Q

�1 comprised of
small diagonal coe�cients �; this represents the certainty of
atmospheric correction.

4. Construct a diagonal covariance matrix P

�1 represent-
ing measurement variance for each remote spectrum.

5. Use Equation 6 to find linear correction coe�cients
xgtr = [x1, x2]

T .
6. Use the linear correction coe�cients to correct all

RTM-derived reflectance estimates using ⇢

0 = x1 + x2⇢̂

This procedure is performed separately for each wave-
length.

4. Evaluation

We performed several experiments comparing the
Bayesian approach to alternative methods. We first char-
acterized performance in simulation with 20 visible/infrared
spectra from the USGS spectral library [Clark et al., 2007].
These spectra spanned a diverse range of shapes and mag-
nitudes, including urban surfaces such as asphalt and build-
ing materials as well as natural surfaces such as vegeta-
tion, open water, snow, and mixtures of vegetation and soil.
We resampled these spectra to the wavelengths of NASA’s
“Classic” Airborne Visible Infrared Imaging Spectrometer
(AVIRIS-C) and simulated atmospheric interference using
the DISORT radiative transfer model [Stamnes et al., 1988].
This estimated the absorption and scattering by a typical
20 layer midlatitude summer atmosphere, with absorption
and aerosol parameterizations from the LibRadTran suite
[Mayer and Kylling , 2005].

We perturbed the resulting top of atmosphere radiances
by two error sources. The first was a random gain and o↵-
set representing systematic error due to uncertainty in at-
mospheric constituents and instrument calibration. These
perturbations were randomly generated for each scene fol-
lowing a zero-mean normal distribution inside the typical
range of radiometric calibration accuracy for imaging spec-
trometers in the visible/infrared range. The second source
of error was Gaussian-distributed gain and o↵set signifying
error sources such as measurement noise that were indepen-
dent in each spectrum. We found the relative performance
of di↵erent correction strategies was generally insensitive to
the magnitude of these perturbations.

After introducing these errors, we simulated the correc-
tion process of Equation 1 and applied the Bayesian empiri-
cal line adjustment. We selected 1 to 5 in situ reference spec-
tra as the training set, and calculated prediction accuracy
on the held-out remainder based on the Root Mean Squared
Error (RMSE) while ignoring water absorption bands. For
each number of reference spectra, the di↵erent possible com-
binations of training and testing samples defined a mean and
standard deviation for performance.

Figure 1 illustrates the e↵ect of changing the regulariza-
tion parameters to favor RTM or empirical behavior. In
this simulation, we used expected (1�) inaccuracies at 2%
of the signal. Some degree of Bayesian regularization al-
ways outperformed the pure methods. In other words, even
single reference target or an error-prone atmospheric model
provided some beneficial information. As the number of
reference spectra increased, the certainty of the empirical
correction improved and larger values of � became optimal.
However, there was always significant benefit to incorporat-
ing a model prediction. The regularized empirical line was
stable over a wide parameter range; performance degraded
appreciably only when values of � departed from the opti-
mum by a factor of five or more.

Figure 2 compares the relative performance of the pure
empirical line, spectral polishing ?, and the hybrid correc-
tion strategy of Moran et al. [Moran et al., 2001]. We use
1� perturbations at 1% of the total signal level. The fig-
ure shows 1-� error bars, with delta symbols at the top
where performance lies beyond the plotted area. Arrows
on error bars signify 1�sigma intervals beyond the plotted
area. The classical empirical line was numerically stable
after three training spectra, and approached the optimum
after five. The refined empirical line approached asymp-
totic error with about three training targets. The Bayesian
approach, exploiting both model and in situ information,
outperformed all alternatives while reducing the standard
deviation for all training set sizes. It provided a consistent
non-degenerate solution from a single training spectrum.

Our second evaluation used airborne data: the ATREM-
derived HyspIRI preparatory reflectance product [Thomp-
son et al., 2015a]. This algorithm typified the RTM ap-
proach. We considered multiple reference targets imaged by
AVIRIS-C during flights over California during the HyspIRI
mission preparatory campaign [Thompson et al., 2015a]
(Figure 3). Eight terrestrial reference targets fell within a
single long flightline from the 2013 data collection year, the
“Soda Straw” spanning several degrees of latitude across
the state of California. The targets included a range of light
and dark surfaces at varying altitudes (Figure 4). The re-
flectance profiles were measured in situ using a Visible Short-
wave Infrared (VSWIR) field spectrometer and a reference
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Figure 3. The reference spectra in our AVIRIS-C study
lie in two flightlines in the US state of California.
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uation. (a) Bright surface (b) Bare rock (c) Bare rock (d)
Roof (e) Boat ramp (f) Church parking lot (g) Soccer field
(h) USDA parking lot.
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spectralon panel, per the procedure outlined in Thompson
et al. [2015a]. After calculating the model-based correction
we fit correction factors using subsets of 1 to 5 training tar-
gets, and then followed the same evaluation procedure as
before. Figure 5 shows the result. Without exception, all
methods’ performance improved monotonically with more in
situ spectra. Relative performance was consistent with the
simulations; the Bayesian method provided the best stabil-
ity and fastest convergence.

In a third evaluation, we considered two challenging
aquatic scenes from the HyspIRI preparatory campaign.
AVIRIS-C overflew Monterey Bay on 10 April and 31 Octo-
ber 2013, providing spatiotemporal coincidence with three
in-situ observation buoys. These locations, the “M0,” “Red
Tide Incubator,” and “Pajaro River Mouth” sites, have been
previously studied in by the PRISM instrument. We used
the strategy detailed in Thompson et al. [2015b] to calculate
in-situ water leaving reflectance. Just three spectra from
each day were available. We evaluated errors by training
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Figure 5. Performance of multiple methods for AVIRIS-
C data: the traditional empirical line (EL); the refined
empirical line of Moran et al. [2001] (REL); spectral pol-
ishing (SP); and the Bayesian empirical line correction
(BEL). Convergence rates resemble Figure 2.
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Figure 6. Reference spectra used in the AVIRIS-C eval-
uation over Monterey Bay. The classical empirical line
method failed in all cases. The top panel shows the re-
sult from 31 October 2013, and the bottom shows 10
April 2013.

on sets of one or two spectra in all possible combinations
and calculating RMSE on the held out remainder. The
reflectance of the dark water targets were low, we set the
additive regularization term to a factor of 0.01 and the mul-
tiplicative to 1.0. These values mean that both the multi-
plicative and additive terms would be equally likely causes
for a “reasonable” error of 1% in absolute water leaving re-
flectance.

Figure 6 shows a typical correction result: the Pajaro
River Mouth spectrum for each of the two days. The origi-
nal estimate (in grey) diverged significantly from truth due
to uncorrected atmospheric scattering. The Bayesian empir-
ical line method gave a more accurate final result. However,
figure 7 demonstrates that the Bayesian method is signifi-
cantly more stable than alternatives; The classical empiri-
cal line method fails to produce any valid result, while the
Modified Empirical Line requires two training spectra be-
fore convergence. Spectal polishing produces very modest
improvements. In contrast, the Bayesian Method provides
a reasonable result for a single training spectrum.

5. Conclusions

This article synthesizes two traditional approaches for at-
mospheric correction of visible/infrared spectra: the empir-
ical line and RTM-based methods. Bayesian inference pro-
vides a rigorous formal framework for incorporating both
information sources, leading to more stable results and su-
perior performance. High performance from few in situ mea-
surements can ameliorate the tedium and cost of obtaining
good quality field spectra, lowering the barrier to entry fora
broader range of scientific, commercial, and public policy
spectroscopy applications. The ability to recover robust so-
lutions from just one or two in-situ measurements makes
accurate reflectance corrections practical for future inves-
tigations to challenging environments, such as aquatic and
remote terrestrial ecosystems.

The probabilistic method points to the possibility of
treating physical atmospheric parameters as random vari-
ables rather than targets of a fitting procedure. In this
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Figure 7. Performance of multiple methods on the Mon-
terey Bay datasets: the traditional empirical line (EL);
the refined empirical line of Moran et al. [2001] (REL);
spectral polishing (SP); and the Bayesian empirical line
correction (BEL). The classical empirical line method
failed in all cases. The left panel shows the result from
31 October 2013, and the right shows 10 April 2013.

SP:	Spectral	Polishing	
EL:	Empirical	Line	
MEL:	Modified	Empirical	Line		
										[Moran	et	al.,	2006]		
BEL:	Bayesian	Empirical	Line	



Conclusions!
•  Incorporating a Radiative Transfer 

Model significantly increases the 
stability of the empirical line!

•  In many cases it permits reliable 
corrections from a single in situ 
measurement.!

•  The statistical formalism generalizes 
model-based and empirical methods!
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Abstract: Atmospheric correction of visible/infrared spectra traditionally
involves either (1) physics-based methods using Radiative Transfer Models
(RTMs), or (2) empirical methods using in situ measurements. Here a
more general probabilistic formulation unifies the approaches and enables
combined solutions. The technique is simple to implement and provides
stable results from one or more reference spectra. This makes empirical
corrections practical for large or remote environments where it is difficult to
acquire coincident field data. First, we use a physics-based solution to define
a prior distribution over reflectances and their correction coefficients. We
then incorporate reference measurements via Bayesian inference, leading
to a Maximum A Posteriori estimate which is generally more accurate than
pure physics-based methods yet more stable than pure empirical methods.
Gaussian assumptions enable a closed form solution based on Tikhonov
regularization. We demonstrate performance in atmospheric simulations
and historical data from the “Classic” Airborne Visible Infrared Imaging
Spectrometer (AVIRIS-C) acquired during the HyspIRI mission preparatory
campaign.

© 2016 Optical Society of America

OCIS codes: (010.0280) Remote sensing and sensors; (010.1285) Atmospheric correction;
(300.6340) Spectroscopy, infrared; (300.6550) Spectroscopy, visible.
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Backup slides!
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Typical transmittance !

[Gao and "
Green 2010]"
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Absorp;on	is	
modeled	for	7	gases	
	
ATREM	retrieves	
water	vapor	for	
each	pixel	using	
0.94	and	1.14	μm	
H2O	band	depths	
	
Ver;cal	profiles	use	
20-layer	
atmospheres	



Ground truth validation targets!
•  Dark targets too bright, bright targets too dark !
•  This suggests uncorrected scattering is a major offender!
•  Accuracy degrades somewhat at short wavelengths!
•  Water vapor maps (not shown) still show some “vegetation bias”!
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DISORT simulation!
•  Simulated atmospheric interference and correction 

using the standard relation:!

•  Introduced errors from two sources:!
–  Perturbed TOA spectrum by a gain and offset, 

simulating errors in atmospheric model!
–  Random white measurement noise!

•  Used 20 references of varying brightness from the 
USGS spectral library!
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Atmospheric Correction with the Bayesian Empirical Line

David R. Thompson1, Dar A. Roberts2, Bo Cai Gao3, Robert O. Green1, Liane
Guild4, Kendra Hayashi5, Raphael Kudela5, Sherry Palacios4,6

Atmospheric correction of visible/infrared spectra is tra-
ditionally bifurcated into (1) model-based approaches us-
ing Radiative Transfer Models (RTMs), and (2) empirical
methods using in situ measurements. We present a general
formulation that encompasses both approaches and enables
combined solutions. First, we use a model-based solution to
define a prior distribution over correction coe�cients. We
use Bayesian inference to incorporate field reflectance mea-
surements, leading to a result which is generally more accu-
rate than pure model-based solutions yet more stable than
pure empirical solutions. It improves results in demanding
environments where few field measurements are available,
such as aquatic applications. We demonstrate performance
in atmospheric simulations and historical data sets from the
“Classic” Airborne Visible Infrared Imaging Spectrometer
(AVIRIS-C) acquired during the HypspIRI mission prepara-
tory campaign.

1. Introduction

Remote visible/infrared reflectance spectroscopy provides
unique insight into the structure and health of Earth’s
ecosystems. These investigations measure radiance at many
wavelengths, �, and then correct atmospheric interference
to retrieve the apparent surface reflectance, the Hemispher-
ical Directional Reflectance Function (HDRF) ⇢(�), or the
related quantity, Remote Sensing Reflectance Rrs(�). Typ-
ically they perform an atmospheric correction using Radia-
tive Transfer Models (RTMs), an approach which is e↵ective
but can be vulnerable to uncertainty in atmospheric gas and
aerosol state. Consequently, empirical methods play a com-
plementary role for di�cult atmospheric conditions.

The empirical line method is one such approach that uses
in situ measurements of spectrally-invariant surface targets
to fit a linear relationship between sensor readings and re-
flectance. This requires visiting and measuring many dis-
tinct locations in the scene. Assuming invariant targets can
be found, di↵erences in remote and in situ perspectives can
still cause discrepancies due to atmospheric and surface het-
erogeneity and the interaction of solar angle with self shad-
ing and non-Lambertian Bidirectional Reflectance Distribu-
tion Functions (BRDFs). Overcoming such discrepancies

1Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA USA

2University of California, Santa Barbara, CA USA
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4NASA Ames Research Laboratory, Mo↵ett Field, CA

USA
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requires tedious measurements from many diverse surfaces.
Aquatic scenes are particularly di�cult due to the challenges
of measuring reflectance from open water. With few in situ
references, the resulting corrections can be unstable and sen-
sitive to confounding e↵ects.

This article describes a more general formulation that
encompasses RTM and empirical methods, enabling com-
bined solutions that improve performance. We treat the
RTM solution as a Bayesian prior on correction coe�cients.
It places data in a reflectance representation so that sub-
sequent correction factors follow a predictable distribution.
Generalized Tikhonov regularization constrains divergence
from the prior. This significantly improves results when ref-
erence spectra are sparse, poorly conditioned or inaccurate.

This article begins by reviewing standard atmospheric
correction methods. We describe the proposed approach,
and explore its behavior with radiative transfer simulations.
Finally, we test its performance on a set of reference mea-
surements acquired by NASA’s “Classic” Airborne Visi-
ble Infrared Imaging Spectrometer (AVIRIS-C) during the
HyspIRI mission airborne preparatory campaign. [Thomp-
son et al., 2015a].

2. Background

Traditional atmospheric correction algorithms like AT-
COR [Richter and Schläpfer , 2005], FLAASH [Matthew
et al., 2002], and ATREM [Gao and Goetz , 1990; Gao et al.,
1993], exploit a relation between the surface reflectance ⇢,
the atmospheric path reflectance ⇢a, and the top of atmo-
sphere reflectance ⇢0 [A. Berk , 2013]:

⇢0 =
⇡L

Fcos( )
= ⇢a +

T⇢

1� ⇢S

(1)

Here F represents extra-terrestrial solar irradiance [Kneizys
et al., 1988],  the solar zenith, T the transmission of gases
and aerosols, and S the spherical albedo of the sky. One such
relationship exists for each wavelength, though our notation
omits this for clarity. Typically T , ⇢a and S are calculated
using a radiative transfer solver such as 6s [Vermote et al.,
1997; Teillet , 1989; Tanré et al., 1990] or DISORT [Stamnes
et al., 1988]. Some atmospheric and surface parameters may
be retrieved on a per-pixel basis using spectral information
[Guanter et al., 2006; Thompson et al., 2015a].

Any inaccuracy in models of gas absorption or calibra-
tion can leave residual errors in the reflectance estimate.
These errors have been addressed by a range of di↵erent
postprocessing methods. One approach, EFFORT [Board-
man, 1998], “polishes” the spectra using a generalized set
of reference spectra to quantify and suppress the high fre-
quency noise component of retrievals Gao and Liu [2013].
The ATCOR atmosperhic correction package can classify
pixels into plant, snow, soil or other surfaces, then apply ap-
propriate band-by-band multiplicative factors to reduce the
high frequency noise that discriminates the retrieval from
the ideal spectrum. Similar methods based on multiplicative
coe�cients have been used throughout the HyspIRI prepara-
tory campaign [Thompson et al., 2015a]. These factors can

1

Spherical	sky	albedo	

Transmission	
	
Reflectance	

Path	Reflectance	Solar	flux,	zenith	
Top	Of	Atmosphere	

Reflectance	

Radiance	
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spectralon panel, per the procedure outlined in Thompson
et al. [2015a]. After calculating the model-based correction
we fit correction factors using subsets of 1 to 5 training tar-
gets, and then followed the same evaluation procedure as
before. Figure 5 shows the result. Without exception, all
methods’ performance improved monotonically with more in
situ spectra. Relative performance was consistent with the
simulations; the Bayesian method provided the best stabil-
ity and fastest convergence.

In a third evaluation, we considered two challenging
aquatic scenes from the HyspIRI preparatory campaign.
AVIRIS-C overflew Monterey Bay on 10 April and 31 Octo-
ber 2013, providing spatiotemporal coincidence with three
in-situ observation buoys. These locations, the “M0,” “Red
Tide Incubator,” and “Pajaro River Mouth” sites, have been
previously studied in by the PRISM instrument. We used
the strategy detailed in Thompson et al. [2015b] to calculate
in-situ water leaving reflectance. Just three spectra from
each day were available. We evaluated errors by training
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Figure 5. Performance of multiple methods for AVIRIS-
C data: the traditional empirical line (EL); the refined
empirical line of Moran et al. [2001] (REL); spectral pol-
ishing (SP); and the Bayesian empirical line correction
(BEL). Convergence rates resemble Figure 2.
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Figure 6. Reference spectra used in the AVIRIS-C eval-
uation over Monterey Bay. The classical empirical line
method failed in all cases. The top panel shows the re-
sult from 31 October 2013, and the bottom shows 10
April 2013.

on sets of one or two spectra in all possible combinations
and calculating RMSE on the held out remainder. The
reflectance of the dark water targets were low, we set the
additive regularization term to a factor of 0.01 and the mul-
tiplicative to 1.0. These values mean that both the multi-
plicative and additive terms would be equally likely causes
for a “reasonable” error of 1% in absolute water leaving re-
flectance.

Figure 6 shows a typical correction result: the Pajaro
River Mouth spectrum for each of the two days. The origi-
nal estimate (in grey) diverged significantly from truth due
to uncorrected atmospheric scattering. The Bayesian empir-
ical line method gave a more accurate final result. However,
figure 7 demonstrates that the Bayesian method is signifi-
cantly more stable than alternatives; The classical empiri-
cal line method fails to produce any valid result, while the
Modified Empirical Line requires two training spectra be-
fore convergence. Spectal polishing produces very modest
improvements. In contrast, the Bayesian Method provides
a reasonable result for a single training spectrum.

5. Conclusions

This article synthesizes two traditional approaches for at-
mospheric correction of visible/infrared spectra: the empir-
ical line and RTM-based methods. Bayesian inference pro-
vides a rigorous formal framework for incorporating both
information sources, leading to more stable results and su-
perior performance. High performance from few in situ mea-
surements can ameliorate the tedium and cost of obtaining
good quality field spectra, lowering the barrier to entry fora
broader range of scientific, commercial, and public policy
spectroscopy applications. The ability to recover robust so-
lutions from just one or two in-situ measurements makes
accurate reflectance corrections practical for future inves-
tigations to challenging environments, such as aquatic and
remote terrestrial ecosystems.

The probabilistic method points to the possibility of
treating physical atmospheric parameters as random vari-
ables rather than targets of a fitting procedure. In this
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Figure 7. Performance of multiple methods on the Mon-
terey Bay datasets: the traditional empirical line (EL);
the refined empirical line of Moran et al. [2001] (REL);
spectral polishing (SP); and the Bayesian empirical line
correction (BEL). The classical empirical line method
failed in all cases. The left panel shows the result from
31 October 2013, and the right shows 10 April 2013.
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spectralon panel, per the procedure outlined in Thompson
et al. [2015a]. After calculating the model-based correction
we fit correction factors using subsets of 1 to 5 training tar-
gets, and then followed the same evaluation procedure as
before. Figure 5 shows the result. Without exception, all
methods’ performance improved monotonically with more in
situ spectra. Relative performance was consistent with the
simulations; the Bayesian method provided the best stabil-
ity and fastest convergence.

In a third evaluation, we considered two challenging
aquatic scenes from the HyspIRI preparatory campaign.
AVIRIS-C overflew Monterey Bay on 10 April and 31 Octo-
ber 2013, providing spatiotemporal coincidence with three
in-situ observation buoys. These locations, the “M0,” “Red
Tide Incubator,” and “Pajaro River Mouth” sites, have been
previously studied in by the PRISM instrument. We used
the strategy detailed in Thompson et al. [2015b] to calculate
in-situ water leaving reflectance. Just three spectra from
each day were available. We evaluated errors by training
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Figure 5. Performance of multiple methods for AVIRIS-
C data: the traditional empirical line (EL); the refined
empirical line of Moran et al. [2001] (REL); spectral pol-
ishing (SP); and the Bayesian empirical line correction
(BEL). Convergence rates resemble Figure 2.
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Figure 6. Reference spectra used in the AVIRIS-C eval-
uation over Monterey Bay. The classical empirical line
method failed in all cases. The top panel shows the re-
sult from 31 October 2013, and the bottom shows 10
April 2013.

on sets of one or two spectra in all possible combinations
and calculating RMSE on the held out remainder. The
reflectance of the dark water targets were low, we set the
additive regularization term to a factor of 0.01 and the mul-
tiplicative to 1.0. These values mean that both the multi-
plicative and additive terms would be equally likely causes
for a “reasonable” error of 1% in absolute water leaving re-
flectance.

Figure 6 shows a typical correction result: the Pajaro
River Mouth spectrum for each of the two days. The origi-
nal estimate (in grey) diverged significantly from truth due
to uncorrected atmospheric scattering. The Bayesian empir-
ical line method gave a more accurate final result. However,
figure 7 demonstrates that the Bayesian method is signifi-
cantly more stable than alternatives; The classical empiri-
cal line method fails to produce any valid result, while the
Modified Empirical Line requires two training spectra be-
fore convergence. Spectal polishing produces very modest
improvements. In contrast, the Bayesian Method provides
a reasonable result for a single training spectrum.

5. Conclusions

This article synthesizes two traditional approaches for at-
mospheric correction of visible/infrared spectra: the empir-
ical line and RTM-based methods. Bayesian inference pro-
vides a rigorous formal framework for incorporating both
information sources, leading to more stable results and su-
perior performance. High performance from few in situ mea-
surements can ameliorate the tedium and cost of obtaining
good quality field spectra, lowering the barrier to entry fora
broader range of scientific, commercial, and public policy
spectroscopy applications. The ability to recover robust so-
lutions from just one or two in-situ measurements makes
accurate reflectance corrections practical for future inves-
tigations to challenging environments, such as aquatic and
remote terrestrial ecosystems.

The probabilistic method points to the possibility of
treating physical atmospheric parameters as random vari-
ables rather than targets of a fitting procedure. In this
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Figure 7. Performance of multiple methods on the Mon-
terey Bay datasets: the traditional empirical line (EL);
the refined empirical line of Moran et al. [2001] (REL);
spectral polishing (SP); and the Bayesian empirical line
correction (BEL). The classical empirical line method
failed in all cases. The left panel shows the result from
31 October 2013, and the right shows 10 April 2013.

SP:	Spectral	
Polishing	
EL:	Empirical	Line	
MEL:	Modified	
Empirical	Line	
[Moran	et	al.,	
2006]		
BEL:	Bayesian	
Empirical	Line	


