2016 HyspIRI Data Product Symposium Earth Observing-1 (EO-1) Disasters Support

Submitted by: Stuart Frye, Mission Systems Engineer

June 1, 2016

Hyperion (red) overlay on ALI Image (green), Oct 2012 Baltimore, MD

ALI False-Color Image, 2014 San Miguel Volcano

ALI True-Color Image, 2013 Bird Sanctuary in India

ALI False-Color Image, 2013 Fire in Australia

EO-1 Complimenting Landsat 8 and MODIS

EO-1 ALI complementing OLI. When the Villarrica Volcano erupted, EO-1 was able to acquire an image on March 5, 2015 – five days before the next Landsat 8 overpass.

EO-1 ALI night-time image of the Vatnajokull volcano complementing MODIS (top).

EO-1 Image Gallery

EO-1 image of Wolf Volcano in Galapagos Eruption on May 25th, image acquired on May 28th

EO-1 ALI night-time image of Holuhraun Iceland volcano

Hyperion Detects the California Methane Leak

On January 1, 2016, Hyperion imaged the massive methane leak in the Aliso Canyon region of California. David Thompson's (JPL) algorithm detected the methane leak within the Hyperion data and showed a pronounced plume trending to the south. Since then, six additional acquisitions have been made, thanks to EO-1's ability to rapidly schedule, reorient satellite attitude, and quickly process and distribute the data.

Hyperion Matched Filter Detection Technique Provided by D. Thompson, A. Thorpe, R.O. Green and The Imaging Spectroscopy Team, JPL, CalTech

2016 Flooding on the Mississippi River

Eyjafjallajökull Volcano, Iceland 24 March. 2010

EO1H2180152010083110KF - Hyperion

Recent EO-1 Disaster Images Pre 23 March Anomaly

Volcano Site	Path/Row	SZA	Date/Time	Notes
Tacora	Path 2 Row 72	48.6	2015-346/12:35:25	12 Dec 2015 – Saturday - Clear, no cloud. No ASE thermal detection
Putana	Path 231 Row 76	51.47	2015-348/12:40:54	14 Dec 2015 – Monday - Perfect cloud-free shot
Lascar	Path 0 Row 76	49.24	015-351/12:50:53	17 Dec 2015 – Thursday - Perfect cloud-free shot (ASE thermal detection)
Lascar Night	Path 117 Row 168	116.8	2015-353/01:32:34	19 Dec 2015 – Saturday - (ASE thermal detection)
Guallatiri	Path 3 Row 73	48.1	2015-357/13:09:41	23 Dec 2015 – Wednesday - Heavily impacted by cloud
Lastaria	Path 2 Row 77	50.48	2016-008/12:58:43	8 Jan 2016 - Friday - Perfect viewing (no ASE thermal detection)
Copahue				13 Jan 2016 - Wednesday
Chaiten				21 Jan 2016 – Thursday

List of the EO-1 volcano scenes taken since December 2015

List of the EO-1 flood and tornado scenes taken in January 2016

Date & Time	Scene ID	Latitude	Longitude	Scene Description
2016-01-01 T15:02Z	EO10230342016001110KF	37.33	-89.74	Cape Girardeau MO flooding
2016-01-03 T14:37Z	EO10220362016003110KF	34.82	-89.492	Holly Springs/Ashland MS tornado scar
2016-01-06 T14:46Z	EO10230352016006110KF	35.711	-90.158	Osceola Ark flooding
2016-01-09 T11:56Z	EO12260782016009110KF	-26.158	-58.265	Formosa Argentina flooding
2016-01-17 T11:50Z	EO12260772016017110KF	-25.3	-57.78	Asuncion Argentina flooding
2016-01-17 T14:51Z	EO10230372016017110PF	32.365	-91.105	Vicksburg MS flooding
2016-01-28 T06:56Z	EO11750722016028110KF	-17.63	23.16	Kwando River Blockage Angola-Namibia border

Overview of Autonomous System Features

- Closed loop satellite autonomy closes the gap between the users and the assets enabling rapid replacement of scheduled targets (less than 4 hours from acquisition) and responsive processing, distribution analysis, and discovery
- Base layer is distributed architecture of services...each sensing asset still under independent control, but allowing requests from many sources
- Situational awareness provided by middleware layer through common application programmer interface distributed components developed at GSFC, but deployed throughout the world
- Users setup their own tasking requests, receive views into immediate past acquisitions in their area of interest, and into future feasibilities for acquisition across all remote sensing assets
- Automated notifications via pub/sub feeds returned to users containing published links to image footprints, algorithm results, and full data sets
- Theme-based algorithms available for on-demand processing and redistribution

Example Ground System Architecture (NASA EO-1) for Autonomous Closed-loop Tasking, Acquisition, Processing, and Evaluation for Situational Awareness Feedback

Distributed Architecture Description

- Middleware services provide rest-ful API (not SOAP-WSDL) user interface
- Nothing is centralized so no single point of failure
- Based on free-ware or open-source tools under the hood so minimal license fees
- Client workflows orchestrated in javascript, Python, or Shell scripts using browser on user platform and single-sign-on protocol with OpenID and Oauth for delegation of user authority across services
- Servers run on Linux, Windows, or MacOS
- Cloud-based container management service from Docker, Software-as-a-Service (SAAS) provided by multiple publishers (open source NASA/GSFC code available on GitHUB), Platform-as-a-Service (PAAS) developed under Convox for easy redeployment, Infrastructure-as-a-Service (IAAS) on cloud provides scalable storage support, simple mail, queue management, registry, caching and content delivery network services
- Products are vectorized TopoJSON overlays that are compact and mapready running on a cloud platform with metadata links to source data

Single Sign-On to All Middleware Services

- Security for access to services should be single sign-on handled by a distributed network of security servers that allow users to sign on once, then as they access other services in the network, those services verify with the security servers that the user is allowed to access and perform certain functions.
- This should apply not only to human interactions with the system, but with delegated authority to have machine-tomachine automated interactions on the users behalf.

Welcome To the NASA GSFC SensorWeb OpenID Server (BETA 1)

Now supporting <u>Verisign Identity Protection (VIP) Services</u> for two-factor authentication

Please get your own credentials ASAP for a more secure access to the system

Building Securely The GEOSS Federation One Node At a Time...

Please Login or New Account

Target Identification and Submittal

- Users setup their own target requests using either coordinate entry, map box, or geonames (similar to an archive search tool)
- Users view their target requests as footprint locations on a map tool
- In-view dates and acquisition times for the target requests are automatically generated as feasibilities for all satellite assets going out at least 5 days
- Total column cloud predictions for each target in-view time and footprint location automatically supplied and updated every 3 hours going forward about 3 days
- Users are made aware of asset engineering activities that could block their request submittal from being executed
- Users view competing requests from other users to be able to judge likelihood of acquisition in support of task submittal decision making
- Near-term target requests are submitted to the scheduling system of each asset and the status of each request is maintained and visible to the users (status = submitted, scheduled, uplinked, acquired, downlinked, posted)
- Setup of a user target request automatically generates a subscription to receive notifications of data receipt for all images acquired in that target request area
- (See next page for example display)

Sample User Target Setup

logout | help | main | users | scenarios | requests | tasking | schedule | pending | criteria

Search 🔘 Create New

Scenario/Campaign Entries

Na

	Content	Theme		Scenario Requests	Created At 💦 🗢	Updated At	Weight			
South America Science 2016	South America Science 2016	air	sfrye	King Sejong Station site , La Ciguena Santa Fe, Sinop-Mato Grosso,	01/26/2016 02:48 PM	01/26/2016 02:48 PM	0.0	Edit	Delete	Show
Kwando River Blockage	Kwando River Blockage Namibia/Angola border	flooding	sfrye	Kwando River Blockage	01/19/2016 01:52 PM	01/19/2016 01:52 PM	0.0	Edit	Delete	Show
Argentina Floods 20160105	Charter Activation for Argentina Floods 20160105	flooding	sfrye	Formosa Argentina 20160105 Charter, Asuncion Argentina 20160105 Charter	01/06/2016 07:07 PM	01/06/2016 07:07 PM	0.0	Edit	Delete	Show

Scenario/Campaign Tasking Requests for Argentina Floods 20160105

														-		
ld	Name		Content		Ge	olocation	Daynight Time	Center	Duration	Scenario Fea	sibilities S	cenario Requests Task	5			
5307	Asuncion Argenti	na 20160105 Charter	Asuncion Argentina 201601	.05 Charter	-25	5.3, -57.78	day time	Hyperion	125		-			Edit	Delete	Show
5306	Formosa Argentir	a 20160105 Charter	Formosa Argentina 201601	05 Charter	-26	5.158, -58.265	day time	Hyperion	125		-			Edit	Delete	Show
2 Found																
Mississip 2015122	opi River 19	Mississippi River 20151229		flooding	sfrye	Cape Girardeau	MO 20151229, Vicks	burg MS 201	51229, St. Louis :	20151229,	12/30/2015 01:09 AM	12/30/2015 02:15 PM	0.0	Edit	Delete	Show
Garland	Texas 20151227	Garland Texas 20151227		flooding	sfrye	Garland Texas 2	0151227				12/28/2015 03:19 PM	12/28/2015 03:19 PM	0.0	Edit	Delete	Show
Holly Spr 2015122	rings MS 3	Holly Springs MS 20151223		flooding	sfrye	Holly Springs/As	hland MS 20151223,	, Booneville N	IS 201512/23		12/24/2015 07:28 PM	12/24/2015 07:28 PM	0.0	Edit	Delete	Show
Shenzen	China Landslide	Shenzen China Landslide 201	51221	landslide	sfrye	Shenzen China L	andslide20151221				12/21/2015 09:26 PM	12/21/2015 09:26 PM	0.0	Edit	Delete	Show
Phillippir Melor	nes Typhoon	Phillippines Typhoon Melor 2	0151214	flooding	sfrye	Phillippines Typl Phillippines Typl	hoon Melor 2015121 hoon Melor Manila	4, Phillippine	s Typhoon Melor	r Naga,	12/14/2015 02:07 PM	12/14/2015 02:07 PM	0.0	Edit	Delete	Show
Nevado Colombi	del Ruiz, a	Volcan Nevado del Ruiz activi	ty	volcano	eandersor	Nevado del Ruis	activity				12/10/2015 08:13 PM	12/11/2015 06:04 PM	0.0	Edit	Delete	Show

X

🔍 Search 🛛 🙆 Create New

Awareness for Timing of Delivery

- Users know in advance on a constantly updated basis exactly when to expect data from the next day's acquisitions from all satellites
- Image delivery availability and quality assessment used as input to the planning/ scheduling for the following day's collections
 - For example, Landsat-8 data is acquired and assessed in time to affect decision about tasking for next EO-1 in-view target-by-target

logout | help | main | users | scenarios | requests | tasking | schedule | pending | criteria

Search O Update Forecast

14

Scenario/Campaign Tasking Opportunities

Scenario Name	Theme	ld	Request	User	Org	Asset	Instrument Center	Date 🔺	Weather	Score	Tasks	Veto					
Belm Germany	technology	79218	Osnabrück Germany	bsiegmann	IGF Osnabrueck	EO-1	hyperion	2016-02-03T08:35:00Z	21	0	E011960242013112110KF(NOT FOUND), E011960242013125110KF(rejected), E011960242013159110KF(NOT FOUND)	-	Veto	Task	Edit	Delete	Show
West Africa - Rangeland	tropical	79599	Nazinga	Sumisu	UNKNOWN	EO-1	hyperion	2016-02-03T08:46:00Z	0	16		-	Veto	Task	Edit	Delete	Show
West Africa - Rangeland	tropical	79276	Aniabiisi	Sumisu	UNKNOWN	EO-1	hyperion	2016-02-03T08:47:00Z	0	16		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79397	Santarem- Km67-Primary Forest	sfrye	SGT	EO-1	hyperion	2016-02-03T12:07:00Z	90	15		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79370	Sinop-Mato Grosso	sfrye	SGT	EO-1	hyperion	2016-02-03T12:09:00Z	32	15		-	Veto	Task	Edit	Delete	Show
Argentina Floods 20160105	flooding	79083	Asuncion Argentina 20160105 Charter	sfrye	SGT	EO-1	hyperion	2016-02-03T12:13:00Z	98	15		-	Veto	Task	Edit	Delete	Show
Argentina Floods 20160105	flooding	79072	Formosa Argentina 20160105 Charter	sfrye	SGT	EO-1	hyperion	2016-02-03T12:13:00Z	100	15		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79361	La Ciguena Santa Fe	sfrye	SGT	EO-1	hyperion	2016-02-03T12:14:00Z	13	15		-	Veto	Task	Edit	Delete	Show
Hong Kong, Shing Mun	tropical	79229	Fluorescence mapping	syedirteza	UNKNOWN	EO-1	hyperion	2016-02-04T01:07:00Z	42	0		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79415	Panderos	sfrye	SGT	EO-1	hyperion	2016-02-04T11:08:00Z	70	15		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79434	Eucaliptus Sao Paulo	sfrye	SGT	EO-1	hyperion	2016-02-04T11:10:00Z	99	15		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79476	Atlantic Forest Sao Paulo	sfrye	SGT	EO-1	hyperion	2016-02-04T11:10:00Z	79	15		-	Veto	Task	Edit	Delete	Show

Rapid Assessment of Recent Images

- User is provided rapid assessment immediately after new images have been taken to visualize the image quality/cloud cover
 - Geolocated scene overlays of recently acquired data are published and notifications automatically fed to users in a compact file format that is appropriately named (asset ID, date, time, center-point coordinates, relevant geonames)
- Users are sent the image overlays and combine them with planned future footprints without having to search for them
 - Each asset posts image data in a centralized system, but users have particular information delivered to their consumer client on a distributed basis from regional product publishers
- The users can track which targets have been acquired vs. which ones aren't yet including not only the user's own target requests, but all images in the users' area of interest regardless of who submitted them
 - If an image was just taken of an area that fulfills the needs of some other user that was about to submit it for scheduling, then that user doesn't have to submit their request

Recent Acquisition Notification Process

EO1 Task Requests

Things you can do

All Tasks All Tasks for past three months All Tasks for past year

Stuart,

EO1 Task Requests are:

	Taskid	Login	Acquisition Time	DOY	Scene ID	Lat	Long	Comments	Status
	5137	sfrye	2016-02-04T01:072	Z 035	EO11210452016035110KF	22.384306	114.142194	Fluorescence mapping Hong Kong country park Shing Mun	submitted
	5138	sfrye	2016-02-03T12:092	Z 034	EO12260682016034110KF	-11.4122916	-55.3247	Sinop-Mato Grosso Sinop-Mato Grosso	submitted
	5136	sfrye	2016-02-02T14:412	z 033	EO10200462016033110KF	20.0929	-89.5639	Kaxil Kiuic Kaxil Kiuic	submitted
	5135	sfrye	2016-02-02T11:34	Z 033	EO12210712016033110KF	-15.95	-47.8666	Brasilia - Campo Sujo Quadrienal and Bienal Tardia Brasilia - Campo Sujo Quadrienal and Bienal Tardia	submitted
	5134	sfrye	2016-02-01T14:08	Z 032	EO10160522016032110KF	11.0166	-85.5	Los Inocentes Los Inocentes	finished
	5132	sfrye	2016-01-31T12:04	Z 031	E012270802016031110KF	-29.264	-61.028	La Ciguena Santa Fe La Ciguena Santa Fe	finished
	5133	sfrye	2016-01-31T08:36	z 031	EO11950522016031110KF	11.186017	-1.568458	Nazinga Model important forage characteristics	finished
	5131	sfrye	2016-01-30T12:592	z 030	EO10020602016030110KF	0.212333	-66.76473	Sao Gabriel da Cachoeira Sao Gabriel da Cachoeira	finished
	5130	sfrye	2016-01-30T11:24	z 030	EO12190702016030110KF	-14.848277	-43.9879	Panderos Panderos	finished
	5129	sfrye	2016-01-28T08:277	z 028	EO11940522016028110KF	10.84603	-0.911855	Aniabiisi Model important forage characteristics	finished
<	5128	sfrye	2016-01-28T06:562	z 028	EO11750722016028110KF	-17.63	23.16	Kwando River Blockage Kwando River Blockage Namibia border	finished
	KML 1	file av	allable here						

Upcoming collections are displayable on a map and on a timeline

Acquisition

are sorted

products

notifications

with links to

Mail: Band to Wallops CS, VA, USA

1110

Autonomous Delivery of Recent Acquisitions to Regional Publishers for Browse Imagery and Classification/Detection Product Processing

Regional GeoSocial API Publisher/Consumer Network (HTML/HTTPS)

This is a *NEW* method to distribute EO-1 and other satellite data products in a compact vectorized format (small data size TopoJSON). The vision is to have a network of regional publishers automatically pre-generate specific satellite data products for a region and then make them available to all consumers in that region. The user obtains the data product by doing a Web browser query based on latitude-longitude. The publisher then provides the user a list of the available products in the region. The user clicks on the ones he/she wants to map and the vectorized data is downloaded to their computer, tablet, or smartphone for display. It is built in to share the products via Facebook/Twitter or other social media with a single click.

Cloud-based Processing and Delivery Overview

Distributed Cloud Architecture for EO-1 Data Product Distribution and Tasking Requests

Distribution Channel for Recently Acquired Products

GeoSocial API (architecture for discovery, retrieval, mapping, evaluation, and sharing)

Coordination of Satellite Acquisitions with Flight Campaigns Example: HyspIRI Preparatory Airborne Campaign

Objectives:

 Acquire contemporaneous satellite images over flight boxes

Tactics:

- Satellite in-views by date and time for each box are visible to the flight team along with cloud predictions and other constraints during morning flight meeting
- Which flight area is to be flown today is identified in that meeting 4-5 hours prior to aerial lift-off based on cloudiness, satellite inviews, and engineering considerations
 Once flight box is identified, satellite target request for the selected box needs to be submitted, scheduled, uplinked, and executed within 4-5 hours to acquire data coincidentally with flight

Results:

 Maximum number of contemporaneous satellite and aerial images have been acquired

User Controlled On-Demand Post Processing for Detailed Evaluation

Instrumentation for Atmospheric and Space Research III, Volume 3756.

EO-1 Anomaly 23 March 2016

- A charge rate differential voltage red limit caused EO-1 load shedding and safehold
- Upon recovery, the on-board GPS exhibited anomalous readings (wrong week since epoch) like GlobalStar, CALIPSO, and JASON-2/3
- Before the anomaly, the GPS unit provided orbit and time for on-board systems
 - Had to command spacecraft computer to ignore GPS input
- Flight operations team began uplinking orbit ephemeris every 8 hours and EO-1 clock was provided by the oscillator, which ran fast by 3-4 seconds every 2-3 weeks causing shift in target locations and geolocation accuracy of 7.5km per second.
- Abandoned search for on-board patch, decided to continue ground management of clock and ephemeris
- Reset S/C clock to ground system GMT time and resumed imaging to assess targeting and geolocation issues 20 April 2016 and again on 9 May
- Fixed on-board autonomy and ground system Level 0 processing to ignore GPS flag and began Level 1R and Level 1Gst processing by 27 April
- Computed oscillator bias and performed correction 18 May 2016
 - Oscillator fluctuates due to thermal and other differences...still gathering data to characterize causes in order to better predict oscillator variation
- Performed most recent clock reset 23 May 2016
- All images since adjustment remain within 1.7km (~1/4th second) target centering and geolocation accuracy

Calculations of Image Targeting and Geolocation Offsets

				Time of	Clock	Offset	Look							
Date	Location	ScenelD	Target Coordinates	Image	Reading	Distance	Angle	Map Offset Direction	ALI Browse Image URL	/2016/501	2210702010	C150110K5	NIC1 01 in	
29-iviay	Cerrado site PINCV	E012210702016150110KF	-14.113, -47.713	11:22		1.0km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ai/221//t	/2010/EU1	2210702010	DISUIIUKF	WGI UI.J	Jeg
28-May	Pinnacles_Desert_We	EO11130812016149110K9	-30.59, 115.155	23:58		1.1km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/113/81	/2016/EO1	1130812016	5149110K9	AK3 01.jp	eg
28-May	Kilimanjaro [MSO/N]	EO11680622016149110K2	-3.0559, 37.3488	5:47		0km		Perfectly aligned	http://earthexplorer.usgs.gov/browse/eo-1/ali/168/62	/2016/EO1	1680622016	5149110K2	AK3 01.jp	eg
27-May	Sinop_Mato_Grosso [I	EO12260682016148110K2	-11.4123, -55.3247	11:47		0.9km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/226/68	3/2016/EO1	2260682016	6148110K2	SG1 01.jp	eg
26-May	Italy Olive Groves	EO11870322016147110KF	40.47, 18.11	7:40		1.3km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/187/32	/2016/EO1	1870322016	6147110KF	SG1 01.jp	eg
26-May	Afg2010 1 [MSO/E]	EO11580372016147110K3	33.49, 60.96	4:25		0.9km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/158/37	/2016/EO1	1580372016	6147110K3	AK3 01.jp	eg
25-May	Karachi [EDC/W]	EO11520432016146110KG	24.8, 66.97	3:52		1.7km		Image is shifted South of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/152/43	/2016/EO1	1520432016	6146110KG	AK3 011.j	peg
25-May	Dunhuang China HYP	EO11370322016146110T9	40.13, 94.34	2:09		1.7km		Image is shifted South of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/137/32	/2016/EO1	1370322016	6146110T9	AK3 01.jp	eg
24-May	Brazil fire [Brakke/W]	EO12240692016145110KF	-12.904, -52.3708	11:38		0.3km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/224/69	/2016/EO1	2240692016	6145110KF	SG1 01.jp	eg
24-May	Dripsey [MSO/W2]	EO12070242016145110T1	51.99, -8.75	9:42		0.3km		Image is shifted South of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/207/24	/2016/EO1	2070242016	6145110T1	SG1 01.jpe	eg
24-May	Oman_Archaeology_2	EO11590432016145110K0	23.79, 56.43	4:54		0.6km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/159/43	/2016/EO1	1590432016	6145110K0	AK3 01.jp	eg
23-May	3rd clock adjustment t	to UTCF												
22-May														
21-May		No				tion		according to act	ablich correlation	مالاند			d sife	
20-May		INO	more	aic	Jula	ιοπ		ecessary to est	abiish correlation	WILL)CK	апп	
19-May												-		·
18-May	Made oscillator drift r	ate adjustment SO	analysi	s h	alte	d U	nti	drift rate and	clock reset had be	en	nert	orm	ned	
17-May			and you	• • •						•••		••••		
16-May														
15-May	Colorado	EO10350402016136110K2	28.7, -110.54	15:53Z		5.2km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/35/40/	2016/EO10	3504020161	136110K2 /	K3 01.jpe	g
14-May	Nassau Bahamas	EO10130422016135110PF	25.16, -77.56	13:39Z		8.7km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/13/42/	2016/EO10	1304220161	135110PF 9	G1 01.jpe	g
13-May	Isreal Oil Spill	EO11740392016134110K8	29.6541, 35.0124	06:28Z		11.4km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/174/39	/2016/EO1	1740392016	6134110K8	SG1 01.jp	eg
12-May	Voyagers Natl Park	EO11400262016133110K2	48.5022, 92.8846	02:30Z				Haven't run yet	http://earthexplorer.usgs.gov/browse/eo-1/ali/140/26	6/2016/EO1	1400262016	6133110K2	AK3 01.jp	eg
11-May	Fort McMurray CA	EO10420202016132110KF	56.6289, -111.5946	16:37Z		12.7km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/42/20/	2016/EO10	4202020161	132110KF S	G1 01.jpe	g
11-May	Nassau Bahamas	EO10130422016132110KF	25.16, -77.56	13:30Z		15.8km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/13/42/	2016/EO10	1304220161	132110KF S	G1 01.jpe	g
10-May	Isreal Oil Spill	EO11740392016131110K5	29.6541, 35.0124	06:19Z		13km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/174/39	/2016/EO1	1740392016	6131110K5	TR2 01.jpe	eg
9-May	2nd clock jam on DOY	130												
8-May	Doi Inthanon Thailand	EO11310472016129110T2	18.5248, 98.4965	01:53Z		6km		Image is shifted South of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/131/47	/2016/EO1	1310472016	6129110T2	AK3 01.jp	eg
7-May	Po di Pila river mouth	EO11910292016128110KF	44.9865, 12.55	07:43Z				Waiting on feedback from Liz Atwood	http://earthexplorer.usgs.gov/browse/eo-1/ali/191/29	/2016/EO1	1910292016	6128110KF	SG1 01.jp	eg
7-May	Isreal Oil Spill	EO11740392016128110K7	29.6541, 35.0124	06:09Z		5km		Image is shifted South of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/174/39	/2016/EO1	1740392016	6128110K7	SG1 01.jp	eg
6-May	Nassau Bahamas	EO10130422016127110KF	25.16, -77.56	13:46Z		4.7km		Image is shifted South of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/13/42/	2016/EO10	1304220161	127110KF /	K3 01.jpe	g
6-May	Bucharest, Romania	EO11820292016127110KF	44.43, 26.11	07:07Z		4.4km		Image is shifted South of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/182/29	/2016/EO1	1820292016	6127110KF	SG1_01.jp	eg
5-May	Po di Tolle Secondary	EO11910292016126110KF	44.8962, 12.4947	08:09Z				Waiting on feedback from Liz Atwood	http://earthexplorer.usgs.gov/browse/eo-1/ali/191/29	/2016/EO1	1910292016	6126110KF	SG1 01.jp	eg
5-May	Haymana Turkey	EO11770322016126110PF	39.6113, 32.6988	06:33Z				Waiting on feedback from Feray Oztopra	http://earthexplorer.usgs.gov/browse/eo-1/ali/177/32	2016/EO1	1770322016	6126110PF	SG1 01.jp	eg
4-May	La Paz	EO10340432016125110K2	24.1293, -110.438	15:51Z		1.5km		Image is shifted South of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/19/26/	2016/EO10	1902620161	125110K4 S	G1 01.jpe	<u>g</u>
4-May	Xilinhot grassland	EO11240302016125110TA	43.55, 116,67	01:00Z		0.6km		Image is shifted South of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/124/30	/2016/EO1	1240302010	6125110TA	AK3 01.jp	eg
3-May	Fixing telemetry playb	ack issue on-board DOY 124	4											
2-May	USGS-Alaska-2	EO10710172016123110K4	61.641, -152.732	19:24Z		0.9km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/71/17/	2016/EO10	7101720161	123110K4 1	R2 01.jpe	g
2-May	Isreal Oil Spill	EO11740392016123110K8	29.6541, 35.0124	06:25Z		3km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/174/39	/2016/EO1	1740392016	6123110K8	TR2 01.jpe	eg
2-May	Sarcheshmeh Copper	EO11610392016123110KF	29.987, 55.6316	04:47Z		2km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/161/39	/2016/EO1	1610392016	6123110KF	TR2 01.jpe	eg
1-May	Lake Frome	EO10970812016122110K1	-30.784, 139.784	22:30Z				Haven't run yet	http://earthexplorer.usgs.gov/browse/eo-1/ali/97/81/	2016/EO10	9708120161	122110K1 1	R2 01.jpe	<u>g</u>
30-Apr	Doi Inthanon Thailand	EO11310472016121110T1	18.5248, 98.4965	02:00Z				Haven't run yet	http://earthexplorer.usgs.gov/browse/eo-1/ali/131/47	/2016/EO1	1310472016	6121110T1	AK3 01.jp	eg
29-Apr	Phoenix	EO10370372016120110KF	33.32, -112.28	16:05Z				Waiting for scene to post on matsu	http://earthexplorer.usgs.gov/browse/eo-1/ali/37/37/	2016/EO10	3703720161	120110KF_/	K3_01.jpe	g
29-Apr	Isreal Oil Spill	EO11740392016120110K6	29.6541, 35.0124	06:16Z		4.7km		Image is shifted North of map underlay	http://earthexplorer.usgs.gov/browse/eo-1/ali/174/39	/2016/EO1	1740392016	6120110K6	SG1 01.jp	eg
28-Apr	Honolulu	EO10640452016119110KF	21.38, -158.04	18:49Z				Waiting for scene to post on matsu	http://earthexplorer.usgs.gov/browse/eo-1/ali/64/45/	2016/EO10	6404520161	119110KF /	K3 01.jpe	g
20-Apr	1st clock jam on DOY 11	1												
Note: Ta	rgets appeared abou	t 7km further south in foo	tprints even before	the ano	maly and	continue	to be a	bout the same amount south of where	they should appear compared to the time shift ge	olocation	accuracy	problem		
Note2: \	When the footprint is	shifted toward the North,	, it implies that the i	nstrume	nts are tu	rning on	early co	ompared to true GMT, when they are sh	ifted toward the South, the instruments are turn	ng on late	2			
Note3: [Differences between	Offset for sequential image	es is probably induce	ed by po	inting ang	le differe	nces							

Change in EO-1 Equatorial Crossing Time

EO-1 ran out of orbital maintenance fuel in February 2011, when the Mean Local Time (MLT) was 10:00 AM. Since then it has been drifting lower in orbit and earlier in overpass time. EO-1 will reach 8:00 AM MLT by October 2016.

ALI data taken at an 8 AM equatorial crossing time is valuable in spite of the decline in SNR

- The ALI SNR is inherently 6 to 10X (~800%) that of ETM+.
- The ALI signal at 8 AM always exceeds 50% of the 10 AM.
- ALI SNR at 8 AM will be 3 to 5X better than that of ETM+ at 10 AM.
- EO-1 will not reach an 8 AM crossing time until October 2016.

Crossing Time	Mar	ch 22	Jun	e 22	Septen	nber 22	December 22			
at Equator	Elevation (degrees)	cos(SZA)	Elevation (degrees)	cos(SZA)	Elevation (degrees)	cos(SZA)	Elevation (degrees)	cos(SZA)		
8:00 AM	28.3	0.47	26.9	0.45	31.8	0.53	27.7	0.46		
8:30 AM	35.8	0.58	33.5	0.55	39.3	0.63	34.3	0.56		
9:00 AM	43.8	0.69	40.1	0.64	54.3	0.81	40.8	0.65		
9:30 AM	50.8	0.77	46.3	0.72	46.8	0.73	47.0	0.73		
10:00 AM	58.3	0.85	52.3	0.79	61.8	0.88	52.9	0.80		
12:00 PM	88.14	1.00	66.57	0.92	88.17	1.00	66.57	0.92		
Signal@8 AM Signal@10 AM		0.56		0.57		0.60		0.58		

Signal (i.e. solar irradiance) is a function of the cosine of the solar zenith angle (SZA).

EO-1 Phase F Decommissioning Timeline

Mission Operations, Science and Decommissioning Timeline	Beginning Date of Activity	Duration	Comments
Science Activities			Selected Key Activities
Generate Level 2 Reflectance			Provided on demand, improvements for water and diverse terrain
Prototype Land Cover Products			For HyspIRI, NASA TE, C Cycle and Climate Change, Bio-physical variables (Veg. fraction, pigments, LAI, moisture, Albedo)
Support NASA Sustainable Land Imaging (SLI) and new satellite mission formulations	10/1/16	1 year	Data fusion and prototype products (ALI, Hyperion, Landsat, SENTINEL 2 MSI)
Spectral time series for VEGETATION targets			FLUX sites, instrumented sites (e.g. SpecNet, LED), LTER, etc.
Spectral time series for CAL/VAL targets			CEOS PICS, VIS/NIR sensor intercomparison
Disaster Response and Mitigation	10/1/16	2-3 months	Relief efforts- floods, hurricanes, fires, volcanoes

EO-1 Phase F Decommissioning Timeline

Decommissioning Timeline	Beginning Date of Activity	Duration	Comments
Receive direction for NASA HQ to begin termination process flow	8/31/16	1 day	Initial trigger to begin proposed steps below
Update End of Mission Plan (EOMP) & develop Decommissioning Plan	9/1/16	30 days	Final EOMP will require only 30 days to complete. Decommissioning Plan may take slightly longer to be completed.
Notification of Intent to Terminate is sent to Administrator with updated EOMP	10/1/16	1 day	Per NASA Policy Directive NPD8010.3B Notification of Intent to Decommission or Terminate Operating Space Systems and terminate Missions
Prepare for Decommissioning Review	10/1/16	90 days	Allow 90 days from Intent to Terminate Notification to Decommissioning Review
Final flight build Content Review	11/1/16	1 day	Review content of flight passivation build procedures and patches
Final flight build ORR and delivery to MOC	12/1/16	1 day	Approve flight passivation procedures/patches and prepare uplink command packages
Passivation Simulation and Rehearsals	12/1/16	25 days	FOT preparatory activities

EO-1 Phase F Decommissioning Timeline

Decommissioning Timeline	Beginning Date of Activity	Duration	Comments
Decommissioning Review	1/5/17	1 day	EO-1 Key Decision Point (KDP) #1
Perform Pulse Plasma Thruster Test and other engineering tests requested by the Satellite Asset Protection Program Office	1/12/17	17 days	Could consider performing some engineering tests prior to HQ authorization to decommission
Disposal Readiness Review	2/1/17	1 day	This is KDP-F #2
Execute passivation activities - Instrument Turn-off - S/C Passivation - Verification of RF Silence	2/15/17	15 days	See EOMP for final satellite configuration details
Archive flight and ground system data and software	3/15/17	15 days	See Phase F report for archive plan
Archive all documentation Code 500 (TWIKI) Facilities/Equipment Disposal	3/31/17	60 days	Operations documentation and data archive delivered through project CM, Flight Projects Sharepoint, Center Archivist, and National Archive packaging reviews
Contract/Agreement Modification and/or Closeout	4/1/17	30 days	Contracting Officer and COTR involvement
EO-1 Operations and Science Documentation Closeout and shipment to National Archive	4/1/17	180 days	Upload electronic versions to center-level repository. Inventory, box, label, and ship hard copy to National Archive
EO-1 Mission Final Report	4/30/17	75 days	28

The Long Term Stability of Hyperion

- The alternative way to understand and assess the stability of Hyperion is to perform a SBAF time series study.
 - Figure shows the SBAF (OLI/S2) stability is better than 0.1% for last 12 years (except for blue band).
 - This would also mean that constraint on simultaneous image pair based cross calibration can be relaxed to take advantage of the long term stability of the site,
 - The stability of Landsat 8 and Sentinel-2 reduces the impact of an eventual loss of Hyperion.

Hyperion Lunar Trends

Hyperion Lunar Cal. Trends for Selected Bands

This figure shows the trending of the lunar calibration data over the mission duration. The plot shows that, except for the shortest wavelength in the VNIR focal plane (\blacktriangle :457.34), the Hyperion data are stable to within ± 1.5%. The data have been normalized to the first acquisition point, and are expressed as percent change from the beginning.

Thank You! stuart.frye@nasa.gov