# The FLuorescence EXplorer (FLEX) space mission



**Neus Sabater** <sup>(1)</sup> Jose F Moreno<sup>1</sup> and Elizabeth Middleton <sup>2</sup> on behalf of the FLEX team.

<sup>(1)</sup> Faculty of Physics, University of Valencia, Spain

<sup>(2)</sup> Laboratory for Biospheric Sciences, NASA/Goddard Space Flight Center, Greenbelt, Maryland



## Vegetation chlorophyll fluorescence

Vegetation chlorophyll fluorescence is light re-emitted by chlorophyll molecules during return from excited to non-excited states and used as indicator of photosynthetic energy conversion.

Excited chlorophyll dissipates the absorbed light energy:

- by driving photosynthesis (photochemical energy conversion).
- as heat in non-photochemical quenching.
- by emission as fluorescence radiation.



## Vegetation chlorophyll fluorescence



Sun-Induced Chlorophyll fluorescence (SIF) is orders of magnitude lower than sun-reflected radiance. Thus, it is necessary to make use of the absorption bands to measure SIF.

The FLEX mission will mainly make use of the  $O_2$ -A and  $O_2$ -B absorption bands to measure SIF at high spectral resolution.

[Report for mission selection, FLEX (ESA-2015)]



## **FLORIS** instrument

FLEX will be equipped with the FLORIS instrument covering from 500-780 nm. In this table FLORIS spectral and Signal to Noise Requirements (SNR) for the mission objective are listed:

| Band                                       | Band I  |         |         |         |                               |         |         |                           |         |
|--------------------------------------------|---------|---------|---------|---------|-------------------------------|---------|---------|---------------------------|---------|
| λ [nm]                                     | 500-677 | 677-686 | 686-697 | 697-740 | 740-755                       | 755-759 | 759-762 | 762-769                   | 769-780 |
| SR Full Width at<br>Half Maximum<br>(FWHM) | 3.0     | 0.7     | 0.3     | 2.0     | 0                             | .7      | 0       | .3                        | 0.7     |
| SSI                                        | 2.0     | 0.5     | 0.1     | 1.0     | 0.5                           |         | 0.1     |                           | 0.5     |
| SNR                                        | 245     | 340     | 175     | 425     | Linear from<br>510 to<br>1015 | 1015    | 115     | Linear from<br>115 to 455 | 1015    |



## Linking chlorophyll fluorescence and photosynthesis



[ Moreno, J. University of Valencia.]

## Reflectance changes between 500-600 nm





**Current Status** 

[Report for mission selection, FLEX ,(ESA-2015)]

[Report for mission selection, FLEX ,(ESA-2015)]

Measuring surface reflectance changes between 500-600 nm allows a better understanding of the relationship between fluorescence and photosynthesis.

#### **Local Time of Observation**

By choosing 10:00 as the equatorial crossing time, the resulting solar illumination hours as a function of latitude guarantee adequate measurements in most areas and for most times of the year and when plants are photosynthetically active.





[Report for mission selection, FLEX ,(ESA-2015)]

# Fluorescence diurnal cycle

Measuring SIF at different times implies measuring SIF at different positions of its diurnal cycle



[Report for mission selection, FLEX ,(ESA-2015)]

This fact becomes essential to a proper photosynthesis interpretation at a global scale.

# Vegetation chlorophyll fluorescence

As it passes through the atmosphere SIF signal is also attenuated





Making use of the O<sub>2</sub> absorption bands implies a good characterization of the atmospheric state, specially aerosols, and surface pressure.

**Current Status** 

## FLEX/Sentinel-3 tandem mission



The tandem mission concept fits with the spatio-temporal FLEX mission requirements.

In addition it provides additional supporting measurements for :

- atmospheric correction
- deriving vegetation biophysical parameters

## FLEX/Sentinel-3 tandem mission

To fully characterize the atmospheric state and perform an accurate atmospheric correction process, FLEX is designed to fly in tandem with the Sentinel-3 mission.



More technical information can be found at the Report for mission selection, FLEX ,(ESA-2015)

# FLEX/Sentinel-3 atmospheric correction inversion process

Making use of high spectral resolution spectrometers (SSI  $\sim 0.1$ nm) provides an accurate description of absorption band regions. However:

• Atmospheric functions i.e.  $L_0, E_{TOC}, T$  and S, must be grouped before being convolved according to the ISRF

$$L_{TOA} = L_0 + \frac{E_{TOC} \cdot T \cdot \rho_{app}}{(1 - S\rho)}$$

**Current Status** 

The series expansion of  $L_{TOA}$  expression is used instead

$$L_{TOA} = \int_{\lambda_i}^{\lambda_f} (L_0 * f) d\lambda + \frac{1}{\pi} \int_{\lambda_i}^{\lambda_f} (TE_{TOC} \rho_{app} * f) d\lambda +$$

$$+ \frac{1}{\pi} \int_{\lambda_i}^{\lambda_f} (TE_{TOC} S \rho_{app}^2 * f) d\lambda$$
(1)

- Spectral instrumental ISRF must be accurately characterized.
  - Spectral shift
  - Band-broadening
  - ISRF shape

## Level-2 processing scheme

**FLEX** mission concept

Schematic view of the processing chain for the FLEX mission to retrieve surface reflectance and fluorescence from measurements from FLORIS. OLCL and SLSTR.



## Level-2 products

List of Level-2 products that will be provided by FLEX.

| Level-2 Products                                                                    | Definition                                                                                                                                                                             |  |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\rm O_2$ -A and $\rm O_2$ -B emission values ( $\rm F_{761}$ and $\rm F_{687}$ )   | Accuracy requirement at $300 \times 300 \text{ m}^2$ spatial resolution: $0.2 \text{ mW m}^{-2} \text{ sr}^{-1} \text{ nm}^{-1}$                                                       |  |  |  |
| Total fluorescence emission (spectrally-integrated value)                           | Accuracy requirement at $300 \times 300 \text{ m}^2$ spatial resolution: $10\%$ of the integrated value                                                                                |  |  |  |
| Peak values ( $\lambda_{(680)}$ , $F_{(680)}$ and $\lambda_{(740)}$ , $F_{(740)}$ ) | Accuracy requirement at 300 × 300 m <sup>2</sup> spatial resolution: 0.2 mW m <sup>-2</sup> sr <sup>-1</sup> nm <sup>-1</sup>                                                          |  |  |  |
| Surface temperature                                                                 | Accuracy: 1–2K, derived from Sentinel-3 SLSTR                                                                                                                                          |  |  |  |
| Non-photochemical energy<br>dissipation                                             | Regulated energy dissipation, accounts for the fraction of light absorbed by non-photochemical pigments (carotenoids/chlorophyll ratio and violaxanthin/zeaxanthin ratio, anthocyanin) |  |  |  |

#### FLEX-End-To-End Simulator scheme



#### FLEX-End-To-End Simulator: Realistic simulation



- FLEX formally approved by ESA PB-EO by 19 November 2015
- Launch date: 2022
- Definition of FLEX Science Plan ongoing (activities for 2016-2022):
  - Dedicated scientific studies
  - Campaigns
  - Workshops and conferences
  - Promotional and educational activities

For more information about FLEX activities:

http://www.esa.int/Our\_
Activities/Observing\_the\_Earth/
New\_satellite\_to\_measure\_plant\_
health



FLEX Mission selection report

#### Regarding the End-To-End Simulator:



**FLEX** mission concept

Vicent, Jorge et al. (2016). FLEX end-to-end mission performance simulator. IEEE Transactions on Geoscience and Remote Sensing 54(7), 4215-4223.

#### Regarding the ISRF requirements:



Vicent, Jorge et al. (2015). Propagation of spectral characterization errors of imaging spectrometers at level-1 and its correction within a level-2 recalibration scheme. Proc. SPIE 9611, 96110T-96110T-12.

#### Regarding the atmospheric correction process and the fluorescence retrieval method:



Sabater, Neus et al. (2015). A sun-induced vegetation fluorescence retrieval method form top of atmosphere radiance for the FLEX/Sentinel-3 tandem mission. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2669 - 2672



Cogliati, Sergio et al. (2015). Retrieval of sun-induced fluorescence using advanced spectral fitting methods. Remote Sensing of Environment 169, 344-357



# Back-up slides

| Higher Level Products                               | Definition                                                                                                                                                          |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PS I-PS II contributions                            | Derived from $F_{c680\flat}$ and $F_{c740\flat}$ to give the $F_{PS.I\flat}, F_{PS.II}$ corresponding missions                                                      |  |  |  |  |
| Fluorescence quantum efficiency                     | Ratio between energy emitted as fluorescence<br>versus actual chlorophyll specific absorbed energy<br>(dimensionless)                                               |  |  |  |  |
| Photosynthesis rate                                 | Effective charge separation at PS II, interpreted as actual electron current resulting in photosynthetic reactions                                                  |  |  |  |  |
| Vegetation stress                                   | Defined as 'actual photosynthesis/potential<br>photosynthesis' using the ratio of the two emission<br>peaks and estimate of non-photochemical energy<br>dissipation |  |  |  |  |
| Spatial mosaics                                     | Regional/continental/global maps                                                                                                                                    |  |  |  |  |
| Temporal composites                                 | Monthly/seasonal/annual composites                                                                                                                                  |  |  |  |  |
| Activation/deactivation of photosynthetic machinery | Determines actual length of the growing season                                                                                                                      |  |  |  |  |
| Dynamic vegetation stress                           | Derived by data assimilation with dynamical vegetation model accounting for temporal changes                                                                        |  |  |  |  |
| GPP                                                 | Derived by data assimilation with usage of external inputs (meteorological data, land-cover maps)                                                                   |  |  |  |  |

All available absorption bands used to retrieve full fluorescence spectrum:







Terrestrial O<sub>c</sub>-B absorptions band