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Research Goals 
•  Develop novel systematic information extraction algorithms from remote or 

minimally intrusive sensing and imaging systems 

•  Advanced mathematical concepts 

•  Novel computational methodologies 

•  Provide a multi-disciplinary environment for training and research to 
undergraduate and graduate students in state of the art tools and 
technologies 

•  Partnerships with end users and industry 

•  Develop technology and tools to solve relevant societal problems 

•  Environment, Homeland Security, Defense, Biomedical 

Funders 
•   NSF 
•   NASA (with UPRM) 
•  UTEP Office of the Provost 

IDR 
•  UT System STARS 
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Main Goal 

Develop algorithms for 
unsupervised unmixing of 

hyperspectral imagery 



Geometry of Linear Mixing 
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Looking at Real 
Hyperspectral Imagery 

•  September, 2001 Fort A. P. Hill AVIRIS data collect 
•  Classification map derived using the PBSLv0 spectral 

library, see Cipar at al., 2004 



Looking at Real 
Hyperspectral Imagery 

Image chip from Fort AP Hill AVIRIS Image 



Looking at Real 
Hyperspectral Imagery 

•  Image chip from Fort AP Hill AVIRIS Image 
•  First 2 PCs explain 97.5% of the total variability. 
•  First 4 PCs explain 99.2% of the total variability 



Spatial Dependencies 
“Gravel Field” 



Spatial Dependencies 
“Grass Field” 



Spatial Dependencies 
“Vegetation” 



Spatial Dependencies: 
Simple Segmentation 



Spatial Dependencies: 
Simple Segmentation 



Spatial Dependencies: 
Simple Segmentation 



Observations 

•  Global image data cloud is not the convex 
hull of a group of endmembers 
– Materials mixing has a spatial dependency 
– Piecewise convex approximation (?) 

•  Convex regions in the global cloud à 
“local structure” 



Proposed Idea 
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Simple Segmentation using 
Quadtree Partitioning 

Image A Quadtree of Image A 
Image B 

Quadtree of Image B 

Goenaga-Jimenez, M.A, and Velez-Reyes, M., 
“Comparing Quadtree Region Partitioning 
Metrics for Hyperspectral Unmixing,” Proc. 
SPIE 8743, 1219- 1228 (2013). 

Shannon entropy [Palmer, M., et al, 2002] 
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Tree leaves represent 
“homogeneous” tiles. 



Experiments with  
Fort AP Hill AVIRIS 

•  Comparison with published results 
– Cipar et al. 2004 
– Spatial distributions of extracted abundances 

and reported information classes 
•  Comparison with cNMF applied to the 

entire image 



Quad-Tree Image 
Partitioning of Fort AP Hill 

Stopping Criterion: 
•  Entropy of the 

tile is ≤ 90% of 
the total entropy, 
OR 

•  Tile size is 1/64 
of the total 
image size.  



Endmember Extraction 
with cNMF 
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Used only for endmember extraction. You can use 
your favorite method. 



Endmembers per Tile 

Knee of the Fitting Error 
Curve Used to  
Determine the  Number 
of Endmembers 
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Endmember Classes 

•  181 Spectral Endmembers extracted 
•  Spectral endmembers were clustered in 11 

Endmember Classes 
– Hierarchical clustering using complete linkage 

and angle distance 
– Davies-Bouldin validity index 
– clusterdata from MATLAB was used 

•  Image has 14 information classes in the 
classification map. 



Experimental Results 
Fort AP Hill 
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Experimental Results 
Fort AP Hill 
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Experimental Results 
Fort AP Hill 
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Experimental Results 
Fort AP Hill 
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Not Extracted 

Green Ag Field #1 Soil Ag Field #1 Shaded Vegetation 



Global cNMF  
Unmixing Results 
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•  cNMF applied to the entire 
image 

•  Number of endmember 
estimated using fitting error 



Comparison with cNMF 
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cNMF vs sacNMF 
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cNMF vs sacNMF 
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Final Comments 

•  cNMF + Spatial partitioning 
–  Facilitates extraction of endmembers capturing local 

spectral features.  
–  Masked on the global cNMF approach 

•  Experimental results 
–  Extracted endmember classes and abundances have 

good agreement with published ground truth. 
•  Other combinations possible 

–  Tried superpixel segmentation with interesting results 
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