

Incorporating Spatial Information in Hyperspectral Unmixing

Dr. Miguel Velez-Reyes Professor UTEP ECE Department

Collaborators

- Miguel Goenaga-Jimenez
- Mohammed Alkhatib
- Jiarui Yi

- Background
 UTEP SenSAL
 - Hyperspectral Unmixing
- Non-convexity of the data cloud
- Exploring the spatial dimension
- Proposed unmixing approach
- Experimental results
- Final Remarks

Sensor and Signal Analytics Laboratory

Expertise/Capability

Research Goals

- Develop novel systematic information extraction algorithms from remote or minimally intrusive sensing and imaging systems
 - Advanced mathematical concepts
 - Novel computational methodologies
- Provide a multi-disciplinary environment for training and research to undergraduate and graduate students in state of the art tools and technologies
 - · Partnerships with end users and industry
- Develop technology and tools to solve relevant societal problems
 - Environment, Homeland Security, Defense, Biomedical

Funders

- NSF
- NASA (with UPRM)
- UTEP Office of the Provost IDR
- UT System STARS

Linear Mixing Model

Unmixing Algorithms

Main Goal

Develop algorithms for unsupervised unmixing of hyperspectral imagery

Geometry of Linear Mixing

Looking at Real Hyperspectral Imagery

- September, 2001 Fort A. P. Hill AVIRIS data collect
- Classification map derived using the PBSLv0 spectral library, see Cipar at al., 2004

Looking at Real Hyperspectral Imagery

Image chip from Fort AP Hill AVIRIS Image

Looking at Real Hyperspectral Imagery

- Image chip from Fort AP Hill AVIRIS Image
- First 2 PCs explain 97.5% of the total variability.
- First 4 PCs explain 99.2% of the total variability

Spatial Dependencies "Gravel Field"

Pixel info: (X, Y) Pixel Value

Spatial Dependencies "Grass Field"

Pixel info: (X, Y) Pixel Value

Spatial Dependencies "Vegetation"

Pixel info: (X, Y) Pixel Value

Spatial Dependencies: Simple Segmentation

Spatial Dependencies: Simple Segmentation

Spatial Dependencies: Simple Segmentation

- Global image data cloud is not the convex hull of a group of endmembers
 Materials mixing has a spatial dependency
 - Piecewise convex approximation (?)
- Convex regions in the global cloud → "local structure"

Proposed Idea

Simple Segmentation using Quadtree Partitioning

Goenaga-Jimenez, M.A, and Velez-Reyes, M., "Comparing Quadtree Region Partitioning Metrics for Hyperspectral Unmixing," Proc. SPIE 8743, 1219- 1228 (2013). http://cnx.org/contents/f0bdfbd9-ec2c-40ca-bb1ed7f025be17d9@4/Hyperspectral-imaging

Experiments with Fort AP Hill AVIRIS

- Comparison with published results
 Cipar et al. 2004
 - Spatial distributions of extracted abundances and reported information classes
- Comparison with cNMF applied to the entire image

Quad-Tree Image Partitioning of Fort AP Hill

Stopping Criterion:
Entropy of the tile is ≤ 90% of the total entropy, OR

 Tile size is 1/64 of the total image size.

+

Endmember Extraction with cNMF

$$(\hat{\mathbf{S}}_{p}, \hat{\mathbf{A}}_{p}) = \arg \min_{\substack{\mathbf{S}, \mathbf{A} \ge \mathbf{0} \\ \mathbf{A}^{T} \mathbf{1} \le \mathbf{1}}} \| \mathbf{X} - \mathbf{S}\mathbf{A} \|_{F}^{2}$$

$$\mathbf{X} \in \mathbb{R}^{m \times n}, \mathbf{S} \in \mathbb{R}^{m \times p}, \mathbf{A} \in \mathbb{R}^{p \times n}$$

+

Used only for endmember extraction. You can use your favorite method.

Endmembers per Tile

4		4	5	64	5	
		2	5	5 5		
4	4	3	5	5		3
4	3	4	5			
5	4	4	6	4	2	
5	3	3	5	4	4	3
5	4	5	4	5		4
3	5	6	5			

Knee of the Fitting Error Curve Used to Determine the Number of Endmembers

$$E_{p} = \frac{\left\| \mathbf{X} - \hat{\mathbf{A}}_{p} \hat{\mathbf{S}}_{p}^{T} \right\|_{F}}{\left\| \mathbf{X} \right\|_{F}}$$

Endmember Classes

- 181 Spectral Endmembers extracted
- Spectral endmembers were clustered in 11 Endmember Classes
 - Hierarchical clustering using complete linkage and angle distance
 - Davies-Bouldin validity index
 - clusterdata from MATLAB was used
- Image has 14 information classes in the classification map.

Experimental Results Fort AP Hill

Class Map Extracted sacNMF **Published** #1 summer 0.9 0.5 deciduous 0.8 forest 0.7 #2 0.6 loblolly 0.65 pine 250 0.5 0.55 zinn 0.4 0.45 0.3 #13 0.58 0.2 0.56 0.54 grass 0.52 field 0.1 0

50 100 150 200 250 300 350 400 450 500

0

Experimental Results Fort AP Hill

Published Class Map sacNMF **Extracted** 0.53 #10 0.52 100 150 0.51 generic 0.9 0.5 200 250 road 300 350 0.8 400 0.46 0.45 100 200 250 300 0.7 #11 0.6 river 200 250 water - 0.5 300 350 400 0.2 450 0. 0.4 50 100 150 200 250 300 350 400 450 500 0.3 0.58 #14 100 0.56 150 0.2 0.54 200 gravel 0.52 0.1 0.48 0.46 0.44

50 100 150 200 250 300 350 400 450 500

Experimental Results Fort AP Hill

Experimental Results Fort AP Hill

Extracted Published Class Map sacNMF 0.56 #9 100 0.54 0.9 150 soil ag 200 0.52 250 field #3 0.5 300 0.8 350 400 0.46 450 0.7 SÓ 0.44 200 250 300 350 400 450 500 160 0.63 - 0.6 0.6 0.58 ? 0.56 0.54 0.5 0.52 0.5 0.48 0.4 0.4 0.44 0.42 0.3 0.2

- - 0.1

0

Not Extracted

Green Ag Field #1

Soil Ag Field #1

Global cNMF Unmixing Results

0.46 0.44

- cNMF applied to the entire ۲ image
- Number of endmember • estimated using fitting error

Comparison with cNMF

cNMF

Vegetation

autumn deciduous #1

Proposed Approach

loblolly pine

autumn deciduous #2

green ag field #3

autumn deciduous #3

0.6

0.5

0.4

0.3

0.2

0.1

cNMF vs sacNMF

cNMF

Proposed Approach

river water

cNMF vs sacNMF

cNMF

Grass Field

Proposed Approach

Grass Field

Final Comments

- cNMF + Spatial partitioning
 - Facilitates extraction of endmembers capturing local spectral features.
 - Masked on the global cNMF approach
- Experimental results
 - Extracted endmember classes and abundances have good agreement with published ground truth.
- Other combinations possible
 - Tried superpixel segmentation with interesting results

Final Remarks

- Thanks to the sponsors
 NASA EPSCoR, UTEP,
 - Univ of Puerto Rico at Mayaguez
- Thanks to AFRL for providing the imagery
- Contact Information
 - Dr. Miguel Vélez-Reyes,
 E-mail: MVelezReyes@utep.edu