Effect of Spatial Resolution on Characterizing Soil Properties from Imaging Spectrometer Data

Debsunder Dutta
Praveen Kumar
Jonathan Greenberg
University of Illinois at Urbana Champaign

Presented at
HyspIRI Science and Applications Workshop - Caltech
October 2015
Problem Statement and Research Questions

1. *What is the feasibility of quantification of the soil properties/constituents using airborne imaging spectroscopy data?*

2. *What is the Effect of Spatial Resolution (Scaling Up) on the Characterization of Soil Constituents?*
Approach – Feasibility of Characterizing Soil Constituents over Large Areas

Soils are complex Heterogeneous system

Take advantage of the AVIRIS spectra (224 bands @10 nm) covering the full Vis-NIR and SWIR region of the spectra

Characterizing soil attributes over large areas

Develop a modeling framework applicable over large areas

Evaluate the consistency of results over the landscape

Very few field observations

-“lasso” method suited for $p >> n$

-sparse “narrow band” models will be able to capture soil attributes

Generally an over-determined problem with $p >> n$

$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n$

Application of models spatially over large areas

Gain insights into the model structure

Captures variability in attributes spatially?

Data and Study Region

- 27\textsuperscript{th} July 2011 between 14:04 and 15:00 local time (19:04 – 20:00 GMT).

- Altitude 9.0 – 9.1 km resulting in pixel resolution of 7.6m.

- Grab samples at 100 different locations.

- Lab analysis of texture and chemical constituents, Organic matter, Ca, Mg, K, Al, B, S, Fe, Zn, Cu, P and Mn

Sources: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, Geobase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, and the GIS User Community
Results – Spatial Maps of Texture and Organic Matter
The spatial maps which reveals consistent spatial organization including legacy landscape features and immediate fine scale disturbances on the landscape.
Results – Spatial Maps of Chemical Constituents

[Images of spatial maps showing Mg, Ca, K, and Al concentrations in different color-coded ranges, with annotations for water and vegetation.]

Historic meander paths of the Mississippi River
Guiding Research Questions

1. **What is the feasibility of quantification of the soil properties/constituents using airborne hyperspectral data?**
   - “Lasso” algorithm based framework found to be feasible to quantify soil constituents over large areas with limited soil sample data and field spectroscopy.
   - Method is applicable equally well for soil texture and chemical constituents and provides spatial maps which reveals consistent spatial organization including legacy landscape features and immediate disturbances on the landscape.

2. **What is the Effect of Spatial Resolution (Scaling Up) on the Characterization of Soil Constituents?**
   - Feasibility of application of the data-mining based method for quantifying soil constituents from space based satellite platforms?
   - Developing a suitable set of metrics for evaluation of performance and consistency of results across scales?
Approach for Evaluating Effect of Scale on the Characterization of Soil Constituents

Scale up Images from Fine to Coarse Resolutions

- Convolution and resampling

Evaluate the consistency of point scale results across scales

- Application of “lasso” based bootstrap framework at different resolutions

Model Structure

- Deviation of prediction from median

Pdf of constituents

Within Pixel Variance

- Distribution of within pixel variance for a set of pixels at L1

Evaluate the consistency of spatial distribution across scales

- Distribution of spatial median and lasso modeled value of soil constituent for a set of pixels at L1

Observed vs model predictions

- Comparison of point scale results and model structure based on scaling up imaging spectroscopy data for different resolutions

Comparison of spatial distribution of constituents obtained by model application to that obtained by statistical scaling for different resolutions

Dutta et al., in preparation, 2015
Point Scale Evaluation of Results – Observed vs Model Prediction

Summary of R² values for all the resolutions

<table>
<thead>
<tr>
<th></th>
<th>10m</th>
<th>15.2m</th>
<th>20m</th>
<th>30.4m</th>
<th>45m</th>
<th>60.8m</th>
<th>90m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.689</td>
<td>0.691</td>
<td>0.655</td>
<td>0.736</td>
<td>0.490</td>
<td>0.644</td>
<td>0.657</td>
</tr>
<tr>
<td>Silt</td>
<td>0.564</td>
<td>0.505</td>
<td>0.540</td>
<td>0.646</td>
<td>0.596</td>
<td>0.686</td>
<td>0.361</td>
</tr>
<tr>
<td>Clay</td>
<td>0.781</td>
<td>0.798</td>
<td>0.799</td>
<td>0.812</td>
<td>0.781</td>
<td>0.791</td>
<td>0.762</td>
</tr>
<tr>
<td>SOM</td>
<td>0.638</td>
<td>0.732</td>
<td>0.659</td>
<td>0.695</td>
<td>0.533</td>
<td>0.718</td>
<td>0.557</td>
</tr>
<tr>
<td>Ca</td>
<td>0.784</td>
<td>0.738</td>
<td>0.745</td>
<td>0.758</td>
<td>0.712</td>
<td>0.739</td>
<td>0.748</td>
</tr>
<tr>
<td>Mg</td>
<td>0.791</td>
<td>0.798</td>
<td>0.750</td>
<td>0.751</td>
<td>0.744</td>
<td>0.767</td>
<td>0.705</td>
</tr>
<tr>
<td>K</td>
<td>0.700</td>
<td>0.691</td>
<td>0.696</td>
<td>0.653</td>
<td>0.687</td>
<td>0.698</td>
<td>0.658</td>
</tr>
<tr>
<td>Al</td>
<td>0.774</td>
<td>0.814</td>
<td>0.737</td>
<td>0.776</td>
<td>0.709</td>
<td>0.760</td>
<td>0.748</td>
</tr>
<tr>
<td>Fe</td>
<td>0.579</td>
<td>0.535</td>
<td>0.624</td>
<td>0.425</td>
<td>0.453</td>
<td>0.586</td>
<td>0.464</td>
</tr>
</tbody>
</table>
Point Scale Evaluation of Results – Soil Texture Triangles

1. If the observed and the model predicted soil properties belong to the same USDA soil texture class, we call it a coincident match or exact classification.

2. Otherwise we compute the total deviation.

1. If the total deviation (Δtotal%) is less than or equal to 25% we call it a ‘close’ classification, otherwise we call it an ‘incorrect’ classification.

\[
\begin{align*}
\Delta_{\text{sand}\%} &= |\Delta_{\text{observed sand}\%} - \Delta_{\text{predicted sand}\%}| \\
\Delta_{\text{clay}\%} &= |\Delta_{\text{observed clay}\%} - \Delta_{\text{predicted clay}\%}| \\
\Delta_{\text{total}\%} &= \Delta_{\text{sand}\%} + \Delta_{\text{clay}\%}
\end{align*}
\]

(a) The observed (b) model predicted points at 7.6 m airborne AVIRIS resolution (c) model predicted up-scaled 15.2 m (d) 30.4 m and (e) 60.8 The sample numbers are indicated on each of the dots.

<table>
<thead>
<tr>
<th>Spatial Resolution</th>
<th>Exact Classification [%]</th>
<th>Close Classification [%]</th>
<th>Incorrect Classification [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 m</td>
<td>46.67</td>
<td>28.89</td>
<td>24.44</td>
</tr>
<tr>
<td>15.2 m</td>
<td>42.86</td>
<td>38.46</td>
<td>18.68</td>
</tr>
<tr>
<td>20 m</td>
<td>40.22</td>
<td>40.22</td>
<td>19.57</td>
</tr>
<tr>
<td>30.4 m</td>
<td>43.96</td>
<td>43.96</td>
<td>12.09</td>
</tr>
<tr>
<td>45 m</td>
<td>43.33</td>
<td>36.67</td>
<td>20.00</td>
</tr>
<tr>
<td>60.8 m</td>
<td>46.51</td>
<td>40.70</td>
<td>12.79</td>
</tr>
<tr>
<td>90 m</td>
<td>37.35</td>
<td>33.73</td>
<td>28.92</td>
</tr>
</tbody>
</table>
Point Scale Evaluation of Results – Model Structure

(a) (b) (c) (d)
Spatial Distribution of Soil Constituents Across the Landscape

Sources: Esri, DeLorme, HERE, TomTom, Intermap, increment P Corp., GEBCO, USDA, FAO, NPS, USGS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, and the GIS User Community
Spatial Distribution of Soil Constituents Across the Landscape - *pdfs*

Region: R1
Spatial Distribution of Soil Constituents Across the Landscape – Deviation from Statistical Central values
Spatial Distribution of Soil Constituents Across the Landscape – Within Pixel Variances
Summary and Conclusions

• Lasso algorithm based modeling framework is applicable across multiple scales from fine to coarse spatial resolutions.

• The model structure across multiple resolutions reveals that important spectral features such as water absorption, minerals (clay, OH-, CO3-) are represented across multiple resolutions.

• The point scale results and the within pixel variance of constituents are found to be consistent across scales.

• The pdf of the constituents are also found to be similar across scales with slight shift in the modes for some constituents.

• The lasso based quantification method has the potential to be applicable from space-based sensors such as HyspIRI.
Thank you!