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DIRSIG simulation - overview

DIRSIG = Digital Imaging and Remote Sensing Image Generation Model
Under development for 204 years at Rochester Institute of Technology

@ Image Modalities
Visible through thermal infrared
“wﬁ}:ﬁ'm (0.4 - 20.0 um)
Passive sensing
Active Laser sensing
Active RF sensing

@ Instruments
Single pixel, 1D arrays and 2D arrays.
Filter, diffraction/refraction, or
interferogram-based photon collection

DIRSIG Scene Building Tools

\

An overview of the

o o general I').II.?SIG @ Platforms
EROPRETMES et P Fancions capabilities . . .
Ground, air or space on static or moving
platforms

http://dirsig.org
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Methods

Study area

The National Ecological Observatory Network (NEON),
Pacific Southwest Domain (D17)

@ San Joaquin Experiment Range (Core site)

@ Soaproot Saddle (Relocatable site)

"Fres e : N <F
Iy reSHO, JCA California) e -

b o R e i n@n Figure from Google Earth RIT
2015-10-14 \WEREL

2015 HysplRI Science and Application Workshop 9



Study area

Methods Airborne and field data
Building virtual scenes
DIRSIG simulation

Methods

Field collection

© San Joaquin Experiment Range:
e June 9 - 14, 2013: 12 AOP sites (4, 8, 36, 112, 116, 361,

824, 952)
Oct 5 - 7, 2014: 3 AOP sites (36, 116, 824)

B

Site 36 Site 116
AOP: Airborne Observation Platform

2015-10-14 Wei Yao
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Methods

Field collection

© Soaproot Saddle:
e June 16 - 20, 2013: 8 AOP sites (43, 63, 95, 143, 299, 331,

555, 1611)
e Oct 8 - 10, 2014: 3 AOP sites (43, 143, 299)

Site 143

AOP: Airborne Observation Platform
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Airborne and field data
Building virtual scenes
DIRSIG simulation

Field collection
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Measurements at each spot
within 80 x 80m site:

© LAI (AccuPAR LP-80)

@ Ground-based lidar
(SICK LMS-151, RITTL)

© Spectra (SVC HR-1024i)
© Hemispherical photos

© GPS position
ﬁ'I'T
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Airborne collection

e AVIRIS data collected during HyspIRI preparatory
airborne campaign, summer 2013 & fall 2014.

e NEON imaging spectrometer (NIS) & LiDAR data
collected in summer 2013.

ﬁ-I-T
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Register multiple Terrestrial Laser Scanner (TLS) scans and extract stem map
from TLS data

e Algorithm:
Extract coordinates of trunk-ground
intersection as tie-points for
registration
Rank potential correspondence sets
using geometric constraints
Use RANSAC to query candidate
point set matches

e Features:
No markers are placed in the scene
No initial pose estimation is required

By Dave Kelbe, PhD student

1T

\WEREL 2015 HysplRI Science and Application Workshop

14



Study area

Methods Airborne and field data
Building virtual scenes
DIRSIG simulation

Methods

Simulate NEON's high-resolution spectrometer data

DIRSIG
data

Site 116 Site 299
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Simulate HysplIRI

DIRSIG key settings
@ Height = 600km
e GSD = 60m
@ 224 bands, 380 - 2500nm, 10nm FWHM

@ Use MODTRAN to simulate atmospheric radiative
transfer

MODTRAN key settings:
@ Enable multiple scattering (IMULT = +1)
e Mid-latitude summer model (MODEL = 2)

o RURAL extinction (IHAZE = 1) ﬁ
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Methods

Simulate HysplIRI

Point spread function (PSF)
2-D Gaussian Function, FWHM = pixel size (60m GSD)

H i H
-15 -1.0 =05 0.0 0.5 1.0 15
pixel

2-D Gaussian kernel Profile of the kernel ‘F
1T
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Results
Estimating LAl from Vls

Simulated forest LAl vs NDVI

5 m transect spacing 10 m transect spacing

15 m transect spacing

6

6 6
* Data * Data
— Model —— Model *

00 01 02 03 04 05 06 07 OU 0.1 D*Z 03 04 05 06 07 0D 0.1 *02 03 04 05 06 07
NDVI NDVI NDVI
LAl = 8.826 - NDVI - 1.506 LAI = 8.928 - NDVI - 1.566 LAl = 12.61 - NDVI - 2.457
R? = 0.92 R? = 0.77 R? = 0.66

Forest LAl can be measured along multiple transects.
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Results
Estimating LAl from Vls

Measured forest LAl vs NDVI

10 m transect spacing

Regression model from simulated data:

LAI

LAl = 8.928 - NDVI - 1.566

R? =077
‘ NDVI .
LAl = 8.858 - NDVI - 1.725
R? = 0.61
Forest LAl can be measure along multiple transects. 1T
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Methods

Simulating AVIRIS data

Verify the model using site 116 scene
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Assessing sub-pixel vegetation structure

Density of the “forest”

0.5
04r
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NDVI vs density

@ Normalized Difference 0.8

Vegetation Index (NDVI) 0.7

NIR — Red 0.6

NDVI = ———— =

NIR + Red 3 05

@ “Forest” density 04

Tree canopy cover refers to the 0.3

proportion of land area covered 02
by tree crowns (m?/m?). 01 02 03 04 05 06

Canopy cover (unitless)
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Narrow band vegetation indices (VIs) to characterize the forest density
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Assessing sub-pixel vegetation structure
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Assessing sub-pixel vegetation structure
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Assessing sub-pixel vegetation structure
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Assessing sub-pixel vegetation structure
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Conclusions

Results indicate:

© VIs could be used to estimate forest density from HysplRI
data.

© The effect of vegetation's position is mainly determined
by the PSF of spectrometer.

© The system’s suitability for consistent global vegetation

structural assessments could be improved by adapting
calibration strategies to account for this variation in
ﬁ-I-T

sub-pixel structure.
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Future work

@ Re-run current simulations according to updated VSWIR
specification:
e 30 m GSD
e new PSF
@ Increase the number of simulations to assess other
sub-pixel vegetation structural variables:
e height of trees
@ crown size
e forest species

© Quantify the simulation results.
@ Investigate Lidar-based approaches for calibration of F
I'T

HysplRI structural estimates.
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