Possibilistic, Robust, Ambiguity-preserving (PRAM) Classification & Regression

Paul Gader, L. Kalantari*, R. Fick* UF

Hichem Frigui UL

UC – Santa Barbara

Paul Gader: UF UCSB, L. Kalantari, R. Fick UF

Hichem Frigui LOUISVILLE U.
Major Point

For Large Scale Processing
Algorithms Need to

(1) Know when they don’t know
(2) Represent all Possibilities

SVM, MLPs
too confident and binary
Overview

• Problem
 – Large Scale Processing
 – Definitions
 – Historical Examples

• Approach
 – Possibilistic Classifiers
 – Self-Organizing Map + Gaussian Process Classifiers

• Experimental Results
Large Scale Processing

• Not just real-time

• More automated processing
 – Accuracy
 – System level development
 – Integration of knowledge sources
 – Management of uncertainty
Definitions

- **Robustness** – Accurately estimating the likelihood that a pattern is not from any class of interest
- **Ambiguity-preserving** – Accurately estimating the likelihood that a pattern represents each class
 – particularly if a pattern could be from multiple classes (e.g. Oaks)
- **Possibility Distribution** – like Probability Distribution but not constrained to sum to 1
 – Mathematically rigorous
NEEDS

• Many Unseen Patterns (Need Robustness)

• Many Ambiguous Patterns (Need Representation)
Self-Organizing Map

Improves Robustness and Ambiguity Preservation 1990s

• Suitable for High Speed Processing
• Handwritten Word Recognition (Optical)
 – Blind Tests of end-to-end systems
• Landmine and IED Detection (Multiple Sensors)
 – Fielded systems (Radar), Many km per day
 – Featured in
 • National Geographic TV: Bomb Hunters Afghanistan
• Spectral Analysis – Classification and Regression
Handwritten Word Recognition

What are these characters?
Are they even characters?

Ha Q H
9 J U
Historical Examples
Handwritten Word Recognition --------- Buried Explosive Object Detection
Historical Examples
Handwritten Word Recognition ----------- Buried Explosive Object Detection
Robustness – Outlier Rejection

Rejection of Outliers as Function of Probability of Detection of Class 1

Rejection of Outliers as Function of Probability of Detection of Class 2
Ambiguity

- Pictures of Oaks
MUFLAG Data – University of Southern Mississippi Gulfport
MUFLAG - Classes
Classes

- RED ROOF
- SHADOW
- LIVE OAK
- GREY ROOF

- ASPHALT
- DEAD GRASS
- SOIL
- LIVE GRASS
Classes as Distributions

- RED ROOF
- SHADOW
- LIVE OAK
- GREY ROOF
- ASPHALT
- DEAD GRASS
- SOIL
- LIVE GRASS
SOM Trained on ... ADGRAT

ASPHALT

GRAASS

SOIL

TREES
8 x 8 Self Organizing Map
SOM Similarity to Grass
Grass “Hot” Regions
Need for Variance in Similarity i.e. Mahalanobis or PCA
CAPO on Spectral Data
Spectral Data from UF – NEON Site
Possibilistic
Gaussian Processes

Math Description Later
Possibilistic Gaussian Process
Ordway Swisher Biological Station
NEON – University of Florida
2010 - AVIRIS Data

Oaks vs Pines vs Outlier Vegetation
OSBS Results
100s of runs
Average Area Under Curve (AAUC)

<table>
<thead>
<tr>
<th>OSBS</th>
<th>SVM AAUC</th>
<th>Gaussian Proc AAUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Outliers</td>
<td>78</td>
<td>88</td>
</tr>
<tr>
<td>No Outliers</td>
<td>96</td>
<td>100</td>
</tr>
</tbody>
</table>
Panama Ground Measurement Results
Made by Stephanie Bohlman et al.
ASD Field Spec 4 (UF CISE Instrument)

<table>
<thead>
<tr>
<th>Panama</th>
<th>SVM AAUC</th>
<th>Gaussian Proc AAUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Outliers</td>
<td>93.8</td>
<td>96.0</td>
</tr>
<tr>
<td>No Outliers</td>
<td>99.6</td>
<td>99.9</td>
</tr>
</tbody>
</table>
Recommended Future Work

- **Algorithm Development Environment (ADE)**
 - Well Defined Problems, Standardized Evaluation
 - HyspIRI, NEON
 - Vegetation
 - PRAM Classification & Regression (Chemistry)
 - System Level Processing
 - Principle of Least Commitment (David Marr, 1982)
 - Time Series
 - Multiple Information Sources
Hosted Widely Available ADE

- Alg Dev Tools
- Fast Computing
- More Data
 - NEON (NSF)
 - HyspIRI (NASA)