Possibilistic, Robust,
Ambiguity-preserving (PRAM)
Classification & Regression

Paul Gader, L. Kalantari*, R. Fick* UF

Hichem Frigui UL

UC – Santa Barbara

University of Florida

Paul Gader: UF UCSB, L. Kalantari, R. Fick UF

Hichem Frigui LOUISVILLE U.

Major Point

For Large Scale Processing Algorithms Need to

(1) Know when they don't know(2) Represent all Possibilities

SVM, MLPs too confident and binary

Overview

- Problem
 - Large Scale Processing
 - Definitions
 - Historical Examples
- Approach
 - Possibilistic Classifiers
 - Self-Organizing Map + Gaussian Process Classifiers
- Experimental Results

Large Scale Processing

Not just real-time

- More automated processing
 - Accuracy
 - System level development
 - Integration of knowledge sources
 - Management of uncertainty

Definitions

- <u>Robustness</u> Accurately estimating the likelihood that a pattern is not from any class of interest
- <u>Ambiguity-preserving</u> Accurately estimating the likelihood that a pattern represents each class
 - particularly if a pattern could be from multiple classes (e.g. Oaks)
- Possibility Distribution like Probability
 Distribution but not constrained to sum to 1
 - Mathematically rigorous

NEEDS

Many Unseen Patterns (Need Robustness)

Many Ambiguous Patterns (Need Representation)

Self-Organizing Map

Improves Robustness and Ambiguity Preservation 1990s

- Suitable for High Speed Processing
- Handwritten Word Recognition (Optical)
 - Blind Tests of end-to-end systems
- Landmine and IED Detection (Multiple Sensors)
 - Fielded systems (Radar), Many km per day
 - Featured in
 - National Geographic TV: Bomb Hunters Afghanistan
- Spectral Analysis Classification and Regression

Handwritten Word Recognition

What are these characters? Are they even characters?

4a a 71
9 DEO

Historical Examples

Handwritten Word Recognition ------ Buried Explosive Object Detection

Historical Examples

Handwritten Word Recognition ------ Buried Explosive Object Detection

Robustness – Outlier Rejection

Rejection of Outliers as Function of Probability of Detection of Class 1 Rejection of Outliers as Function of Probability of Detection of Class 2

Ambiguity

Pictures of Oaks

MUFLAG Data — University of Southern Mississippi Gulfport

MUFLAG - Classes

Classes

Classes as Distributions

SOM Trained on ... ADGRAT

GRASS

8 x 8 Self Organizing Map

SOM Similiarity to Grass

Grass "Hot" Regions

Need for Variance in Similarity i.e. Mahalanobis or PCA

CAPO on Spectral Data Spectral Data from UF – NEON Site

Possibilistic Gaussian Processes

Math Description Later

Possibilistic Gaussian Process Ordway Swisher Biological Station NEON – University of Florida 2010 - AVIRIS Data

Oaks vs Pines vs Outlier Vegetation

OSBS Results 100s of runs Average Area Under Curve (AAUC)

OSBS	SVM AAUC	Gaussian Proc AAUC
With Outliers	78	88
No Outliers	96	100

Panama Ground Measurement Results Made by Stephanie Bohlman et al. ASD Field Spec 4 (UF CISE Instrument)

Panama	SVM AAUC	Gaussian Proc AAUC
With Outliers	93.8	96.0
No Outliers	99.6	99.9

Recommended Future Work

- Algorithm Development Environment (ADE)
 - Well Defined Problems, Standardized Evaluation
 - HyspIRI, NEON
 - Vegetation
 - PRAM Classification & Regression (Chemistry)
 - System Level Processing
 - Principle of Least Commitment (David Marr, 1982)
 - Time Series
 - Multiple Information Sources

Hosted Widely Available ADE

Alg Dev Tools

Fast Computing

- More Data
 - NEON (NSF)
 - HyspIRI (NASA)

