Comparison of Hyperspectral and Multispectral Satellites for Discriminating Land Cover in Northern California

Goals

- Land use/land cover is an important variable to map at local to global scales
- Accuracy of VSWIR HyspIRI-like satellite imagery for mapping land cover at a regional scale
 - Scalable methods eye on global scale mapping from HyspIRI
 - Machine learning Random Forests (RF) vs.
 Multiple-Endmember Spectral Mixture Analysis (MESMA)
 - Summer vs. Multi-temporal (spring, summer, fall)
- Compare accuracy to multispectral satellite sensors
 - Simulated Landsat OLI and Sentinel-2
 - Real Landsat OLI
 - Radiance and reflectance

Reference data

Percent Cover

Impervious Surface Water Urban Landscape Annual Crops Perennial Crops Beaches or Dunes Sparsely Vegetated Non-Vegetated Tidal Marsh
Upland Grasses and Forbs
Dune Vegetation
Shrubs
Needleleaf Trees
Evergreen Broadleaf Trees
Deciduous Broadleaf Trees

30,000 km² image area (no overlap)

22,500 km² terrestrial area

Land Cover Classification System (LCCS)

Global, universal system - U.N. FAO

20 classes

Closed-Canopy: > 65% cover trees or shrubs Open-Canopy: 15% - 65% cover trees or shrubs

Dominant Plant Functional Types

12 classes

Closed-Canopy: > 65% cover trees or shrubs

RANDOM FORESTS

Analysis by Matt Clark

Processing flow

Processing flow (continued)

Spectral metrics

Summary of hyperspectral metrics organized by methods (in bold) and dominant spectral features and region (in italics).

Indices	Absorption-Based	Derivative			
Photosynthetic pig	ments, LAI, structure, physiology, stress	(VIS-NIR)			
SR, NDVI, EVI, SAVI, ARVI					
ARI1, ARI2, mARI, CRI1, CRI2		BE-Wvl,Mag,DArea			
PRI, RVSI	Disco D.W. A. A.s.	GP-Wvl,Refl			
mSR705, NDVI705, MCARI	Blue-D,W,A,As	YE-Wvl,Mag,DArea			
VOG1, VOG2, VOG3	Red-D,W,A,As	RW-Wvl,Refl			
VIgreen, VARIgreen, CIrededge		RE-Wvl,Mag,DArea			
PSRI, NDII					
	Water and structure (NIR)				
WBI	EWT	NE1-Wvl,Mag			
NDWI	NIR1-D,W,A,As	NE2-Wvl,Mag			
MSI	NIR2-D,W,A,As				
L	ignin, cellulose, nitrogen (SWIR)				
CAI	SWIR1-D,W,A,As				
NDLI	SWIR2-D,W,A,As	SE-Wvl,Mag			
NDNI	SWIR3-D,W,A,As				

86 metrics per season

Spring, Summer, & Fall

Wvl = wavelength, Mag = derivative magnitude, Refl = percent reflectance, D = depth, W = width, A = area (width x depth), As = Asymmetry.

Results

	N	INF	Refle	ectance	Hyperspectral Metrics		
Classes	Summer	Multi-temp	Summer	Multi-temp	Summer	Multi-temp	
20	41.2	→ 55.8	50.5	→ 65.5	69.3	72.2	
12	52.0	→ 68.5	62.9	→ 78.8	82.7	85.1	
			•				

All variables in Random Forests, no optimization

- MNF = 100 summer, 100 three seasons
- Reflectance = 186 summer, 558 three seasons
- Metrics = 86 summer, 258 three seasons

Variable

R package VSURF = Variable Selection Using Random Forests, Genuer et al., 2015

20 classes – Multi-temp, HyspIRI metrics

HyspIRI compared to Landsat and Sentinel

MESMA

Analysis by Nina Kilham

Endmembers

VIEW-IT training samples with ≥ 90% cover of one type selected

MESMA

ViperTools 2.0 with 2- to 3-EM models – shade & 1-2 other EMs

Image endmembers optimized using EAR/MASA and Iterative Endmember Selection (IES)

Summer and three seasons analyzed separately, no band selection

Herbaceous

Evergreen Needleleaf Trees

Deciduous Broadleaf Trees

MESMA fraction images

Fractional abundance to LCCS classes

MESMA Classification

Lowest RMSE model in scene overlap 12 Classes

Dominant
Plant
Functional
Types

No
Open-canopy
or Mixed
Forests

Simulated HyspIRI Summary

Random Forests

- Multi-temporal, metrics produced best results
 - 72.2% (20 class)
 - 85.5% (12 class)
- Metrics significantly better than reflectance or MNF bands
- FAST <1 day (although computing metrics & VSURF slow)

MESMA – 12 classes

- No benefit for multi-temporal data with MESMA (as implemented)
- MESMA maps more heterogeneous (pixelated)
- RF multi-temporal metrics had 12.4% higher accuracy
- SLOW days, even with multi-threaded processing

Comparison to Multispectral Sensors

- Random Forests (HyspIRI, Landsat, Sentinel)
 - Multispectral accuracy also benefited from multi-temporal data
 - With 12 or 20 classes,
 - HyspIRI reflectance roughly equivalent to broadband, multispectral sensors (real & simulated)
 - However, ~5% boost in accuracy with HyspIRI metrics
- MESMA (HyspIRI, Landsat)
 - Large (+13-20%) increase in accuracy with multi-temporal data for Landsat, but not HyspIRI
 - Multi-temporal real Landsat and HyspIRI had the same accuracy
 - MESMA had 5-8% lower accuracy than equivalent Random Forests tests

Take home messages

- Multi-temporal data from satellites phenology
- Machine learning with key hyperspectral metrics that target vegetation biochemistry, structure, and phenology outperforms Landsat and Sentinel by <u>5%</u> or better
- Metrics are possible due to many narrow, contiguous bands in hyperspectral data
- Machine learning finds optimal variables (importance ranks are interesting as well!)
- Spectral Mixture Analysis may not be best approach for broad-scale land-cover mapping
- Compare results to multispectral satellites over large areas (Land-cover community wants more Landsats!)

EXTRA SLIDES

Indices					Absoroption-based				Derivative					
Region	Metric	Spring	Summer	Fall	Region	Metric	Spring	Summer	Fall	Region	Metric	Spring	Summer	Fall
VNIR	SR				VNIR	Blue-Wvl				VNIR	BE-Wvl			
VNIR	mSR705				VNIR	Blue-D				VNIR	GP-Wvl			
VNIR	NDVI				VNIR	Blue-W				VNIR	YE-Wvl			
VNIR	mNDVI705				VNIR	Blue-A1				VNIR	RW-Wv1			
VNIR	NDVI705				VNIR	Blue-A2			1	VNIR	RE-Wvl			II
VNIR	SAVI				VNIR	Blue-As				VNIR	NE1-Wv1			
VNIR	PRI				VNIR	Red-Wvl				VNIR	NE2-Wv1			
VNIR	EVI				VNIR	Red-D				VNIR	SE-Wv1			
VNIR	ARVI				VNIR	Red-W				VNIR	BE-Mag			
VNIR	RVSI				VNIR	Red-A1				VNIR	GP-Rfl			
VNIR	NDII				VNIR	Red-A2				VNIR	YE-Mag			
VNIR	VOG1				VNIR	Red-As				VNIR	RW-Refl	I		
VNIR	VOG2				NIR	EWT				VNIR	RE-Mag			1
VNIR	PSRI				NIR	NIR1-Wvl				VNIR	RE-DArea			
VNIR	CRI1				NIR	NIR1-D				VNIR	DZ1DGVI			1
VNIR	CRI2				NIR	NIR1-W				VNIR	DZ2DGVI			
VNIR	ARI1				NIR	NIR1-A1	1			VNIR	BE-DArea			
VNIR	ARI2				NIR	NIR1-A2	1			VNIR	YE-DArea			
VNIR	mARI				NIR	NIR1-As				NIR	NE 1-Mag			
VNIR	VIgreen				NIR	NIR2-Wvl				NIR	NE2-Mag			
VNIR	VARIgreen				NIR	NIR2-D	1			SWIR	SE-Mag			
VNIR	CIrede dge				NIR	NIR2-W		1						
VNIR	MCARI				NIR	NIR2-A1								
NIR	WBI				NIR	NIR2-As		1						
NIR	NDWI				NIR	NIR2-A2								
NIR	MSI				SWIR	SWIR2-Wvl								
SWIR	NDNI				SWIR	SWIR2-D								
SWIR	NDLI			1	SWIR	SWIR2-W								
SWIR	CAI				SWIR	SWIR2-A1	I		1					
					SWIR	SWIR2-A2								
					SWIR	SWIR2-As		1						
					SWIR	SWIR3-Wvl								
					SWIR	SWIR3-D								
					SWIR	SWIR3-W								
					SWIR	SWIR3-A1	1							
					SWIR	SWIR3-A2								
					SWIR	SWIR3-As								

Important metrics

Abs = absorption-fitting Der = derivative Index = narrowband indices

RF User and Producer Accuracy

