

Remote Sensing of the Mono Basin and the Long Valley Caldera

Presented by Neil C. Pearson University of Nevada Reno 2015 HyspIRI Workshop

Northern Alteration

Mono Craters

Betty Anne Prospect

Mammoth Mt.

Long Valley Caldera

Location

Extent of HyspIRI Airborne Campaign Flights

70

70

140

210

280 km

Background

Geothermal alteration minerals show diagnostic features at ~2.21µm

Questions to answer:

- What are the limiting factors in detecting these minerals i.e spectral resolution, spatial resolution, spectral mixing?
- Are there computationally less intensive ways of finding them in a scene?
- Can alteration be used for determining volcanic hazards

Betty Anne Prospect

- Envi spectral hourglass wizard and DCS revealed alteration to the SE of Mono Lake.
- This alteration area had only been identified in 1 other publication a 1958 Bureau of Mines resource report.
- AVIRIS revealed the alteration to cover a much wider extent than was mentioned in the report.

MTMF Endmember (Bright indicates best match)

Betty Anne Prospect Continuum Removal Comparison

- A continuum removal from 2.137µm to 2.367µm
 and band placement at 2.17µm, 2.21, and 2.25 show
 extent of alteration(Yellows and Oranges) as well as
 variation within the alteration.
- This alteration is identifiable in both ~15m AVIRIS data and 30m HyspIRI simulated data.

Top: 15m AVIRIS

Bottom:30m simulated HypIRI

Northern Alteration

Continuum removal from $2.137\mu m$ to $2.367\mu m$ is able to highlight subtle changes in the $2.21\mu m$ due to the Al-OH bond length, an indicator of metamorphic grade (Duke & Lewis, 2010)

Long Valley Caldera

Continuum Removed Band Combination Over Long Valley

Discovery Fault Zone, Comparison with HyMap

Densely vegetated areas appear to hide alteration that had been identified by Martini (2002) using 4m HyMap data.

> Top: From Martini 2002 showing mapped alteration mineralogy.

Bottom: Continuum removed band combination showing no alteration. 9

N'86°75

Mammoth Mountain Further Hymap Comparison • Comparison of AVIRIS 15m with identifications made by Martini (2002) using 4m HyMap data.

• Alteration zones were identified in AVIRIS data, with more endmembers chosen.

Mammoth Mt. Examples of Identified Minerals

Mono-Inyo Craters

- The Mono-Inyo Craters consists of approximately 30 craters and domes that are currently exposed and erupted over the past 40,000 years.
- These craters show general variations in the 2.21µm Si-OH stretch absorption band.

2.21µm Band Depth Map of Geologic Materials

• The Mono-Inyo Craters consists of approximately 30 craters and domes that are currently exposed.

Discussion of 2.21µm Si-OH band

Top: From Abbot et al., 2013 Bottom: From Swayze, 2001 Right: From Friedman, 1980

- Other studies have shown spectral variation with age of volcanic materials.
- These variations are attributed to a hydration layer that forms on rocks as they are exposed to the atmosphere.

Conclusions

- Multiple alteration mineral types, including argillic and QSP that cover small areas are identifiable using ~15m AVIRIS spectra and to a slightly lesser extent in 30m.
- A Continuum Removal from 2.137µm to 2.357µm with proper channel placement highlight alteration minerals in 15m data and to a lesser extent 30m data, and can show subtleties mineral transitions.
- Volcanic materials in the area show an increase in band depth in the 2.21µm Si-OH stretch, as age increases similar changes were shown by Abbot et al. (2013) and Swayze (2001). This could be used as a way to date young volcanic occurrences in remote areas such as the Aleutian Islands or Kamchatka Region.