

Quantifying active volcanic processes and mitigating their hazards with HyspIRI data

Michael S. Ramsey 1

¹University of Pittsburgh, Department of Geology and Planetary Science, Pittsburgh, PA, USA

overview background examples results summary

- Overview
- Background
 - high temperature emissivity
 - prior findings
 - analysis/impact of the VSWIR?
- Modeling/Analysis Results
 - · Tolbachik, Russia
 - Kilauea, HI
 - other examples
 - constrain flow conditions

Studies of Lava Flows

overview

background examples

results

summary

Bigger Picture

- large lava flows are quite common
 - threaten property and impact airspace
 - e.g., Kilauea, (Hawaii); Eyjfjallajökull and Bardarbunga (Iceland); Nyiragongo (DR Congo), Etna (Italy)
- captured dozens of these flows with ASTER over the past 15 yrs.
 - data provide a unique opportunity to examine the TIR response over time and model the flow paths

ASTER URP: Bardarbunga Iceland (23 Sept 2014)

Studies of Lava Flows

overview

background

examples

results

summary

❖ Recent Work

- modified version of an invited talk I gave at the IUGG Meeting in June
- mostly geared toward a terrestrial volcanology crowd
 - but was a joint planetary/terrestrial session
- modeling work has grown out of current ongoing (NSF-funded) laboratory analysis of emissivity changes in molten silicates
 - now incorporating that data into flow propagation models for terrestrial hazard studies (work with A. Harris in France)
 - extended the results/model in a reverse application to flow fields on Mars (work with D. Crown in Tucson, AZ)
 - use morphometric data from THEMIS, CTX and HiRISE to estimate flow eruption parameters (Ramsey et al., 2015)

Thermal Analysis of Melts

overview

background

examples

results

summary

❖ TIR Data

- at the pixel-scale
 - anisothermality results in significant errors in the derived TIR emissivity spectra
 - due to assumptions during separation of emissivity and temperature combined with the non-linearity of the Planck curve

(Rose et al., 2013)

- at the lab-scale
 - $T_{lava} > T_g$ (glass transition) also affects the TIR emissivity
 - results in the ability to extract Si:O bonding information

Thermal Analysis of Melts

Thermal Analysis of Melts

overview

background

examples

results

summary

Composition

- presence of different minerals
- wt. % SiO₂ of glassy lavas

Silicate Bond Structure

- changes to the mineral/glass structure alters bond lengths and strengths
 - emissivity increases as a lava cools through the Tg
 - impacts remote determination of:
 - > lava composition
 - > accurate surface temperatures
 - > down-flow cooling, viscosity, from thermorheological models

Development of New Tools

overview

background

examples

results

summary

Field Multispectral FLIR

- new adaptation to a FLIR camera to measure in situ emissivity for the first time
 - six wavelength filters fabricated to replicate ASTER, MODIS, MASTER and HyspIRI channels
 - > acquire ≈ 3 frames/filter pass
 - > slow process of post-processing
 - automated, smaller version now in development
 - should allow for remote, autonomous deployment

Development of New Tools

overview

background

examples

results

summary

Field Multispectral FLIR

- tested at Kilauea's Halemaumau lava lake (August 2014)
- concept appears to work although more calibration is needed
 - detected SO₂, glassy surfaces and basaltic mineralogy
 - confirmed avg. 7% emissivity drop in molten basalt (max = 12%)

FLIR filter sequence of Halemaumau crater lava lake spanning ≈ 20 seconds (Aug 2014)

Cooling & Emissivity at the Flow-Scale

overview

background examples

results

summary

Thermorheological Flow Modeling

- apply FLOWGO for channelized flows and vary the emissivity
 - track the heat gains and losses of an element of lava flowing down a natural or user-defined channel
 - > cooling-limited (open-channel) rather than supply-limited
 - > temperature-dependent viscosity
 - > recalculation of the thermal and petrological conditions of the lava

(Harris & Rowland, 2001)

- allows determination of flow parameters such as:
 - > viscosity, cooling rate, crystallinity, ...

$$(Q_{vsc} + Q_{xst}) = (Q_{cnd} + Q_{cnv} + Q_{rad})$$

* time-average discharge rate = $A_{lava} \cdot [(Q_{cnd} + Q_{cnv} + \epsilon Q_{rad}) / \rho (C_p \Delta T + C_L \Delta \phi)]$

* need accurate thermal parameters for the lava (emissivity, temperature)

Cooling & Emissivity at the Flow-Scale

overview

background

examples

results

summary

Thermorheological Flow Modeling

- typically, emissivity and vesicularity are assumed constant:
 - $\varepsilon \approx 0.95 0.98$; $\zeta \approx 0.92$
 - these were varied for a prior FLOWGO run of a channel in the 1972
 Mauna Ulu flow field (Harris et al., 2009)

Example: Arsia Mons

results background examples overview summary CTX image (~ 5m/pixel)

Example: Arsia Mons

overview

background examples

results

summary

First, Estimate the TADR

- using certain starting assumptions
- calculate initial viscosity
- flow area proportional to TADR:
 - TADR = $0.90 7.80 \times 10^3 \text{ m}^3/\text{s}$
 - > similar range of 3.4 13.0 x 10³ m³/s (Wilson & Mouginis-Mark, 2001)
- Next, use modeled TADR to initiate the FLOWGO model
 - under Martian conditions using properties of terrestrial flows
 - model down-flow crystallinity, viscosity, velocity, temperature until flows "stops"

(Ramsev et al., 2015)

HyspIRI: Proposed Work

overview

background examples

results

summary

Quantifying active volcanic processes and mitigating their

hazards with HyspIRI data

- Proposed Tasks
 - Task 1: Quantify the magnitude of temperature-dependent emissivity change for active basaltic surfaces using in situ field and laboratory IR data (fundamental science)
 - > development of the new miniature multispectral IR camera
 - > in situ data collection

HyspIRI: Proposed Work

overview

background examples

results

summary

- Quantifying active volcanic processes and mitigating their hazards with HyspIRI data
 - Proposed Tasks
 - Task 2: Determine the accuracy of hightemperature emissivity extraction at potential HyspIRI spatial resolutions and its impact on modeling of flow advance (applied science)

- spatial analysis of the HyspIRI analog data
- integrated IR measurements and FLOWGO modeling

overview background examples results summary

What Can We Say About TIR Data of Lava Flows?

- provide a synoptic view of volcanic activity at many scales
- critical ground- and lab-based studies continue to validate the orbital data and modeling approaches needed for scaling over orders of magnitude resolution differences
- quantitative information on temperature and emissivity
 - able to derive composition/structure of silicate phases; vesicularity;
 thermal fractions using the data
 - more accurate modeling of lava flows on Earth and Mars
- newly-funded work for HyspIRI
 - multi-scale approach to test how the accuracy of HyspIRI data will affect thermal models of eruption rate and flow propagation,
 - directly related to hazard assessment and eruption forecasting

overview background examples results summary

Collaborators:

- J. Byrnes, Oklahoma State University, USA
- D. Crown, Planetary Science Institute, USA
- A. Harris, Clermont Université, France
- P. King, Australia National University, Australia
- R. Lee, SUNY Oswego, USA
- M. Patrick, Hawaii Volcano Observatory, USA

Prior Students and Post-Docs:

- A. Steffke, University of Hawaii, USA
- A. Carter, A. Harburger, R. Lee, S. Rose, University of Pittsburgh, USA

Funding:

- NASA, SENH9900000159, NNG04G069G, NNX08AJ91G, NNG04G064G, HyspIRI Airborne Preparatory Program
- NSF, EAR0309631, EAR0711056, EAR0106349

(Harburger and Ramsey, 2011)