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Example of pre-images. Actual values of ρw , ρ, Ta, and ρa are displayed in red, and the 
pre-images at a distance no more than δ  = 0.001 are displayed in black. The search 
spaces for the pre-images include NOMAD and AERONET-OC data sets and maritime, 
continental, and urban aerosols in various proportions and amount. 

Ill-posed Nature of the inverse Problem 

-The ocean color inverse problem (or atmospheric correction) is the 
retrieval of water reflectance from TOA reflectance. 

-Multiple combinations of atmospheric and oceanic parameters (or 
pre-images) yield the same TOA reflectance. This places the 
inverse problem in a probabilistic context.  

ρ ≈ ρa + ρwTa 



Classic Atmospheric Correction Scheme 

-The perturbing signal (aerosol reflectance) is sought within a sub-
ensemble of possible solutions, selected conveniently to relate 
univocally spectral dependence of TOA signal in the NIR and/or 
SWIR (where the ocean may be considered black) to aerosol model. 

-The sub-ensemble may be based on theoretical considerations, on 
statistics of observed aerosol models (e.g., from AERONET), but 
there is no guaranty that the obtained solution is the actual one.  

-The aerosol model cannot be determined from the spectral 
dependence of the TOA signal in the NIR/SWIR. No sensitivity to 
aerosol absorption. Information about aerosol altitude is needed.  

-Consequently, very strict masks are applied to the data, typically 
15% daily coverage, and scheme basically works when/where aerosol 
amount is low (fortunately over most of the ocean).  

-No uncertainties are associated to the retrievals. Accuracy is 
evaluated using too few match-up data sets.  

-Advantage: No assumption is made about water reflectance. 



Bayesian Methodology 
 
-The forward model is written as: ρ  = φ(ρw, xa) + ε, where ρ is the 
TOA reflectance, ρw is the water reflectance, xa denote the 
atmospheric parameters, and ε is a random noise. 
 
-In the Bayesian approach to inverse problems, ρw and xa are treated 
as random variables. This defines a probabilistic model, where any 
vector of measurements yobs is considered a realization of the 
random vector y.  
 
-The probabilistic model is specified by the forward model together 
with the distributions of ε and of (ρw, xa). The distribution of (ρw, 
xa), called the prior distribution, describes in a probabilistic manner 
the prior knowledge one may have about ρw and xa before the 
acquisition of the data.  



Bayesian Methodology (cont.) 
 
-The Bayesian solution of the inverse problem of retrieving (ρw, xa) 
from y is defined as the conditional distribution P[(ρw, xa)/y]. It is 
called the posterior distribution. Hence, given the observation yobs, 
the solution is expressed as the probability measure P[(ρw, xa)/y = 
yobs]. 
 
-One is generally interested in certain relevant characteristics of 
the posterior distribution: its mean, which gives an estimate of the 
parameters to retrieve (ρw and xa), and its covariance, which 
provides an accompanying measure of uncertainty.  
 
-One may also compute a p-value, i.e., the probability that y takes a 
value at least as extreme as yobs. Since the whole procedure consists 
of inverting a forward model (a component of which is a RT model), 
the p-value allows one to detect situations for which the forward 
model is unlikely to explain the data.  



 
Connection with the Classical Scheme 
 
-Consider the conditional expectation E[ρw/ρ]. Since E[ρw/ρ]= 
E[E[ρw/ρ, xa]/ρ], we see that E[ρw/ρ, xa] can be modeled first, and 
then averaged conditionally on ρ in a second time. 
 
-This corresponds to inverting ρ assuming that the atmosphere is 
in the state xa, and then averaging the results according to the 
distribution of xa given ρ. 
 
-So, compared with the classical approach, instead of picking an 
aerosol model and then inverting ρ assuming the atmosphere is in 
the state xa, the Bayesian methodology amounts to placing a 
probability distribution on xa, depending on ρ, inverting ρ for each 
xa, and then averaging the results accordingly. 
 



Inverse Modeling in Practice 
(Frouin and Pelletier, RSE 159, 2015) 
 
1) Specify prior distributions Pw and Pa 
 
Assumed uniform for all parameters except aerosol optical 
thickness (log-normal); ρw from measurements, i.e., NOMAD and 
AERONET-OC datasets; aerosol parameters from WMO maritime, 
continental, and urban models. 
 
2) Estimate Pε 
 
By comparing TOA values from selected imagery with forward 
model predictions. 
 
3) Approximate numerically expectation and covariance, and p-value 
 
By using models constructed on a partition of the space of TOA 
reflectance. These models allow one to keep the execution time 
small, i.e., suitable for use on an operational basis.  



Theoretical Performance for SeaWiFS 

Geometry-averaged statistics: ρw bias and standard deviation per channel, averaged 
over all the geophysical conditions and observation geometries.	  

a) Average Errors 



b) Errors per viewing geometry 

Standard deviation for each angular geometry at 412 nm. Each polar plot 
corresponds to a Sun zenith angle (SZ) in the range 0-76 deg. Radius 
depicts sine of view zenith angle from 0 to 76 deg.  



c) Errors per aerosol optical thickness 

Standard deviation per spectral band aerosol optical thickness bin, with all 
the geometries. 



d) Errors per aerosol type 

Standard deviation per spectral band, averaged all geometries, as a function of 
the aerosol type. Maritime aerosols: right corner of triangles, urban: top 
corner, and continental: left corner.  



 λ (nm), R2,  Bias,  RMSD,  N 
 412, 0.838, 0.0016, 0.0059, 132  

 443, 0.806, 0.0009, 0.0045, 144  

 490, 0.671, -0.0002, 0.0034, 144  

 510, 0.587, -0.0005, 0.0030, 113  

 555, 0.722, -0.0007, 0.0026, 129 

 670, 0.820, <0.0001, 0.0012, 28  

  All,  0.852, 0.0002, 0.0040, 690	  	  

Comparison between marine reflectance estimated from SeaWiFS data using 
the Bayesian technique and measured in situ (NOMAD match-ups). 

Evaluation against in Situ Measurements 



Application to SeaWiFS Imagery, South Africa, 02/14/1999 

Estimated marine reflectance, Bayesian methodology. 



Estimated uncertainty on marine reflectance, Bayesian methodology. 



Estimated marine reflectance, SeaDAS algorithm. 



Histograms of valid marine reflectance estimates.  



Variograms of valid marine reflectance estimates in selected area.  



Estimated τa, ρa, and associated uncertainties, and p-value, Bayesian methodology. 



Application to SeaWiFS Imagery, Other Regions 

Marine reflectance imagery at 412 nm in various regions, Bayesian methodology.  



Uncertainty associated with marine reflectance retrievals at 412 nm. 



p-value (retrieval quality index) associated with marine reflectance 
estimates at 412 nm. 



Differences between marine reflectance estimates at 412 nm from 
SeaDAS and the Bayesian methodology. 



Neural Network with PCA 
(Gross et al., SPIE 6680, 2007) 
 
-TOA reflectance (after correction for molecular scattering 
effects) is decomposed in principal components. 
 
-Components sensitive to the ocean signal are selected and  
combined to retrieve the principal components of marine 
reflectance, allowing reconstruction of the marine reflectance. 

	

ρp = ρ - ρm = f(ρw) 
 
ρp = ∑i cpi epi 
 
ρw = ∑j cwjewj 
 
cwj = gj(cpi )  

 



Correlation coefficients between the principal components of ρp, cpi, and of ρw, cwj; 
Empirical functions based on linear correlation matrix; Canonical correlation k 
between desired cwj and the set of cpi selected to calculate it.   

-Functions gj relating cpi to cwj approximated using multilayer 
perceptrons. 



POLDER synthesis of marine reflectance for the first decade of June 2003, 
Black Sea, using the NN/PCA method. (Upper left) Rw(443). (Upper right) Rw(565). 
(Lower left) Rw(670), not retrieved by the standard POLDER algorithm. (Lower 
right) QI. Note that QI is not correlated to detected features.  

POLDER synthesis of of chlorophyll-a concentration for the first decade of June 
2003, Black Sea. (Left) PCA/NN method. (Right) Standard POLDER algorithm.  

[Chl-‐a],	  PCA/NN	   [Chl-‐a],	  Standard	  

Rw(443),	  PCA/NN	   Rw(565),	  PCA/NN	  

Rw(443),	  PCA/NN	   QI,	  PCA/NN	  

Application to POLDER Imagery, Black Sea 



ρw(412),	  PCA/NN	   ρw(412),	  SeaDAS	  

ρw(670),	  PCA/NN	   ρw(670),	  SeaDAS	  

Marine reflectance retrieved using the PCA/NN method (left) and SeaDAS 
(right). NN reflectance is slightly higher in the blue. NN imagery is less noisy.  

Application to SeaWiFS Imagery, West Australia 



  
(Left) RGB composite of MERIS imagery off the coast of France and Portugal, 
21 June 2005. (Right) RGB composite of marine reflectance retrieved by the 
PCA/NN algorithm. Marine reflectance is retrieved in the presence of thin 
clouds and sun glint. 

Application to MERIS, Northeast Atlantic 



 
 (Left) RGB composite of MERIS imagery of the Black Sea and Sea of Azov, 9 August 

2008. (Right) RGB composite of marine reflectance retrieved by the PCA/NN 
algorithm. Marine reflectance is retrieved in the presence of thin clouds and sun glint.	  

Application to MERIS, Black Sea 



Conclusions 

Bayesian approaches are adapted to the ill-posed nature of the 
ocean color inverse problem. They constitute a valuable 
alternative to the classic atmospheric correction scheme.   

-They allow the construction of reliable multi-dimensional 
confidence domains of the retrieved marine reflectance.  

-They have the potential to provide accurate estimates in sun 
glint and thin cloud conditions, and absorbing aerosols, i.e., to 
increase substantially the daily coverage of ocean-color products.  

-Regionalization of the inverse models is a natural development to 
improve retrieval accuracy, for example by including explicit 
knowledge of the space and time variability of atmospheric 
variables. 


