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PACE opens new vistas in aquatic biology… 

Blue and near-UV spectra from the 

OCI will measure accessory (non-

chlorophyll) pigments, separate 

chlorophyll and colored dissolved 

organic matter, and characterize 

phytoplankton taxonomy.

…but atmospheric interference 

might make this challenging

Devred et al. [2013]

S. Maritorena, UCSB: Dissolved organic matter and 

absorbing aerosols both absorb in the UV, which may 

limit the ability to differentiate them.

B. Mitchell, UCSB: Retrieving UV-absorbing 

mycosporine amino acids, algal proteins, and particle 

size distributions is needed to specify phytoplankton 

functional groups and plankton ecosystem structure.
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Aerosol is transported over many ocean regions  
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MISR April aerosol optical 

depth (AOD) climatology 

2000-2012, [Kalashnikova et 

al., 2013]

SeaWiFS mission cumulative 

climatology of chlorophyll-a 

concentration (Ca). White 

shows locations where Ca > 0.3 

mg m-3, and the assumption of 

a black surface in the NIR is 

likely to be violated [Bailey et 

al., 2010]
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Aerosol is transported over many ocean regions  
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OMI absorbing aerosol climatology, [Courtesy of Omar Torres]
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Is aerosol really a problem?

Ahmad et al. [2010]
TOA reflectance computed from old (M70) and new (Rh80M06) aerosol models

Current NASA atmospheric correction approach

• Obtain AOD and Aerosol Type from Red-NIR bands

• Extrapolate to Blue, UV (for next-generation instrument)

• Correlate with surface reflectivity at (MOBY) surface buoy

The goal of atmospheric correction (AC) is to convert observed top-of-atmosphere 

spectral radiance to water-leaving reflectance (Rrs) over the NUV-VIS spectral regime
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works well for 

spectrally flat 

aerosols
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“Complicated” aerosols

Courtesy of Rajan

Chakrabarty

Wagner et al. [2012]

2 mm

Dust and brown carbon strongly absorb toward UV
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Dust and BC absorption features might be misinterpreted as 

CDOM absorption

Relative comparison to CDOM
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Dust refractive 

indices adopted from 

Scanza et al. [2015]
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Courtesy of Curt Mobley

Remote sensing reflectance for various water types
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Theoretical sensitivity to absorption

•SOS vector model

•AOD =0.3

•Rayleigh atmosphere + aerosol

•Nadir view

•Ocean albedo was adjusted to match ECOLIGHT 
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• Compared atmospheres with Ahmad dustlike fine mode 
particles with same particle with hematite ni

– Dry particles (rv = 0.149, rn = 0.084)

– Ahmad = “dustlike”

– Adjusted = “dustnihem”

• “Two-stage atmospheric correction”

– Lul – xl = Lwl/Edl = Rrsl

– Scaling at to Rrs at 555
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•Rayleigh atmosphere + aerosol

•Nadir view

•Ocean albedo was adjusted to match ECOLIGHT 
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Neglecting hematite dust aerosols leads to errors outside of the 

PACE Rrs retrieval requirement
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Using AirMSPI to explore the value of a polarimeter

Spectral bands 355, 380, 445,

470*, 555,

660*, 865*, 935

nm (*polarized)

Flight altitude 20 km

Multiangle

viewing

Between ±67º 

using single-

axis gimbal 12

AirMSPI data were 

acquired over the 

USC SeaPRISM

AERONET-OC site 

on the Eureka 

platform on 

February 6, 2013
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Weakly-absorbing 

spectrally flat 

aerosols  
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AERONET observations vs. AirMSPI optimized coupled 

aerosol-surface retrieval (no look up tables)
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 Colored dots: Mean 

AirMSPI retrieval 

results based on 8 

initial guesses at 

19:43 UTC. 

 Colored error bars: 

Spread of these 8 

results.

 Blue and green lines: 

SeaPRISM

observation at 19:08 

and 20:08 UTC.

Aerosol optical depth retrieval sensitivity 

to measurement information content

9 angles without polarization

1 angle without polarization
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Normalized water-leaving radiance sensitivity to 

measurement information content

 Colored symbols: 

Mean and spread of 

AirMSPI retrieval 

results based on 8 

initial guesses. 

 Blacks symbols: 

SeaPRISM

observations with 

error bars denoting 

PACE SDT 

uncertainty target.

9 angles without polarization

1 angle without polarization
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Since standard Chl-a retrievals use band ratios of blue to green, 

retrievals were normalized by the 555 nm value. 

• The band-ratio approach works well for spectrally flat, absorbing aerosols

• Coupled atmosphere-ocean retrievals from a multi-angle polarimeter would 

help in cases of “complicated” aerosols, and in the case where the surface 

spectrum is not simply modeled by a chlorophyll concentration only 16

Effect of scaling normalized water leaving radiances

AERONET-OC

Ahmad best-fit 
AERONET-OC

Ahmad best-fit 
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 Dust and Brown Carbon strongly absorb in the UV, similar to CDOM 

absorption

 Unaccounted aerosol absorption at near-UV and blue can lead to Rrs

biases beyond PACE defined threshold of maximum of 20% or 0.004 over 

the l of 350 – 395 nm, and the maximum of 5% or 0.001 over the l of 

400 – 600 nm

 Aerosol absorption features vary significantly depending on aerosol 

internal and external mixing, and cannot be approximated by a simple 

spectral model at UV and blue wavelengths

 Multiangle polarimetry distinguishes atmosphere and surface absorption 

in the UV-VNIR

 We expect a polarimeter to provide a risk reduction for PACE's Rrs

retrievals at short wavelengths and for coastal waters
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Discussion points
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Feedback is welcome
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Dust spectral features

Dust aerosols are composed of internal and external mixtures of 

different minerals. Iron oxides dominate dust short VIS-UV 

absorption spectra.

Courtesy of Rob Green
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Atmospheric dust spectra cannot be easily 

approximated

Iron Oxide content of the atmospheric mineral dust varies 

globally from 1 to 10% 
20

Perlwitz et al., [2015] 


