

Jet Propulsion Laboratory California Institute of Technology

Radiometric calibration and atmospheric correction

David R. Thompson¹ Bo-Cai Gao² Robert O. Green¹

¹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA ² Naval Research Laboratory, Washington, DC

Copyright 2015 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged.

Part 1: Radiometric Calibration

Part 2: Atmospheric Correction

NASA/JPL Portable Remote Imaging Spectrometer (PRISM)

In-situ data courtesy Raphe Kudela, UCSC

D. R. Thompson, F. Siedel, B.-C. Gao, M. Gierach, R. Kudela, R. O. Green, P. Mouroulis. Optimizing Solar Irradiance for Coastal Spectroscopy. *Geophysical Research Letters* (2015, in press).

Two issues...

Jet Propulsion Laboratory California Institute of Technology

Part 1: Radiometric calibration

Calibration challenges: radiometry

Spectral response affects the estimated radiometry

Jet Propulsion Laboratory California Institute of Technology

Part 2: Atmospheric correction

Optimizing irradiance estimates

- Hypothesis: fine spectral sampling (~3nm) causes sensitivity to sampling of the solar irradiance (and intrinsic uncertainty)
- Solution: modify an irradiance estimate using a smooth inscene reference (here, a concrete surface)

Optimizing irradiance estimates

$$E(x) = kf_{\Box}(R_{rs}) - \hat{R}_{rs}(x)k_2 + \beta kx - 1k_2$$

Agreement with *in situ* R_{rs} is improved

D. R. Thompson, F. Siedel, B.-C. Gao, M. Gierach, R. Kudela, R. O. Green, P. Mouroulis. Optimizing Solar Irradiance for Coastal Spectroscopy. *Geophysical Research Letters* (2015, in press).

Aerosols are a persistent challenge

In-situ data courtesy Sherry Palacios and Liane Guild, NASA Ames; Raphe Kudela, UCSC

Concluding thoughts

- Ocean observations place extreme requirements on both calibration and atmospheric correction
- Is there a common root cause to both issues (far tails of the SRF)?
- Underscores need for spectral uniformity

Thanks

- The PRISM team, including Zakos Mouroulis, Byron Van Gorp, Mark Helmlinger, Scott Nolte, Sarah Lundeen
- Felix Seidel, Heidi Dierssen, Michelle Gierach, John Fontenla, Raphe Kudela,

