HyspIRI symposium-2015
NASA Goddard Spaceflight Center

An Overflow-Free, Fixed-point based

Singular Value Decomposition Algorithm
for

Dimensionality Reduction of Hyperspectral Images

Bibek Kabi, Anand S. Sahadevan, Ramanarayan Mohanty Aurobinda Routray, Bhabani. S. Das
Anmol Mohanty (Me!)

Indian Institute of Technology, Kharagpur

' Processed Image
Hyperspectral Image

Floating-point Program

v

Hyperspectral
Algorithms

Conversion to
Fixed-Point

Uniform Wordlength
v

Wordlength ‘

Optimization

>
Optimized Wordlength

FPGA: Field Programmable Gate Array
ASIC: Application Specific Integrated Circuit

. Power
Hardware Price .
Consumption
Vi o =3
Floating-Point ~
Processor T
Fixed-Point ’;Q =
Processor -4 l
Fixed- Point o
ASIC Jd

Previous Works on Linear Algebra

based on fixed point

Execution time for five numerical linear algebra algorithms
90

80
70
60

40
30
20
10

Time (us)

JTaCObI' SVD
(5 x 5)

ChOIeSky
(5x5) (5 X 5) (5212 G&uss-jOrdan
(

B Floating point DSP running at 300 MHz
Il Fixed point DSP running at 700 MHz

*SVD — Singular Value Decomposition

Research Article

Design and Implementation of Numerical Linear Algebra
Algorithms on Fixed Point DSPs

“;G =| MIXDES 2010, 17* International Conference "Mixed Design of Integrated Circuits and Systems”, June 24-26, 2010, Wroctaw, Poland

i CORDIC and SVD Implementation

in Digital Hardware

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64. NO. 2, FEBRUARY 2015
4

A Low Complexity Scaling Method for the
Lanczos Kernel in Fixed-Point Arithmetic

Juan Luis Jerez, Student Member, IEEE, George A. Constantinides, Senior Member, IEEE,
and Eric C. Kerrigan, Member, IEEE

well as ing more efficient

ional architectures for scientific applications. Fixed-point arithmetic presents additional

Abstract—We consider the problem of enabling fixed-point implementation of linear algebra kernels on low-cost embedded systems, as

Latency (delay)

Registers LUTs
double 1046 011
float 557 477
FX53 53 53
FX24 24 24

14
11

(

>

Y

~ 20x resource savings N\

~ 10x latency savings
< y 8 4

_—" gy s

Jerezetal., 2015

DATASET USED

Hyperspectral Images for Validation
* Hyperion (Space-borne): Hyperion image
contains the Chilika Lake site, India.

* ROSIS (Air-borne): ROSIS contains Pavia,
University site, Italy.

Hyperion ROSIS

0 ;

Scale: Log ,
(RSN
o<

P
N =
o<

\-80

(due to Overflow)

Problems in Fixed point

Diverse & Large Range

g
h
—
'

i
(]
(—]

Hyperion

l

ROSIS

IWLs - Integer Wordlengths

I

Variables

Without Scaling|

With Scaling

i

SQNR - Signal-to-quantization-noise-ratio

1.5
1.0
0.5
0.0

- =0.5

U’

1.5
1.0
0.5
0.0

- =0.5

Overflow
Data SQNR
Hyperion 3.73
ROSIS 10.01
MSE
PCs Hyperion ROSIS
PC1 2.0628e+05 | 6.7682e+04
PC2 1.0199e+03 | 6.5052e+03
PC3 1.5305e+04 | 4.6489e+03
PC4 262.3714 1.3140e+03
PC5 3.2786e+03

PCs - Principal Components MSE - Mean Squared Error

Proposal - Scaling Method!

If each element of a matrix is divided by the
square root of the product of its one-norm and
infinity-norm or Frobenius norm then all the
variables generated during the computation of
SVD will have tight analytical ranges

1.7395e+05

1.5038e+05
1.2673e+05
1.1601e+05
1.1131e+05

1.5038e+05
1.5677e+05
1.4146e+05
1.2567e+05
1.1879e+05

1.2673e+05
1.4146e+05
1.4673e+05
1.3744e+05
1.2754e+05

Scaling

0.0056

0.0048
0.0041
0.0037
0.0036

0.0084)

0.0073
0.0061
0.0056
0.0054

0.0048
0.0050
0.0045
0.0040
0.0038

0.0073
0.0076
0.0069
0.0061
0.0058

0.0041
0.0045
0.0047
0.0044
0.0041

0.0061
0.0069
0.0071
0.0067
0.0062

m = JIALIAL

m = |Al

PROOF Given the scaling factor as m = \/|[|Al|, [|A]|, the Hestenes SVD algorithm

applied to A has the following bounds for the variables for all i, j, x and y:

Derivation in brief @ [Aly € [-1,1] @ [Uly € [-1,1] o(c € [—r, 1]
Proof: Using vector and matrix norm properties, the o te[-1,1] ° [V]y €[-1.1] @ [oi]« €[0,1],
ranges of the variables can be derived. We start by cs e [0,1] ¢Ca € [0, /]
bounding the elements of the input matrix as ® sne[-1,1] b e[0,r]
max | AKy I< HAH <1 where i, j denotes the iteration number and []x and [],, denote the x™
Xy 2 component of a vector and xy™ component of a matrix respectively.

Given the scaling factor as m = ||A||z, the Hestenes SVD algorithm applied to

A has the following bounds for the variables for all i, j, x and y: U is the left singular vector matrix, which is
orthogonal and each column of U has unity
@ [Aly € [-1,1] @ [U]y €[-1,1] o(c e [-1,1] norm. Hence all elements of are in the range
@ te[-1,1] @ [V]y €[-1,1] @ [si]x €[0,1], [-1,1] following (*).
@ cs € [0,1] @ € [0, 1]
@ sn € [-1.1] oCh € [0, 1] UEh| <uep), =1)

where i, j denotes the iteration number and [|x and [|., denote the x™
component of a vector and xy™ component of a matrix respectively. Similar is the case for right singular vectors V.

SQNR 047 bits (Overflow) [147 bit [125 bit
200 176.76 180.13
150
100 78.03 74.96
50 3.73 10.01
0 C————————
Hyperion ROSIS
MSE [Hyperion] Scale: log,
O47 bits (Overflow) 047 bits 025 bits
10.00
5.30 4.18
5.00 3.00 * 2.42
0.00 l l [| [I ' |
-5.00 PC1 PC2 PC3 I—I PC4 I—I
-10.00 -6.09 -6.31 -5.43 -5.37
-15.00
-20.00
-25.00 -20.00 -20.00 -20.00 -20.00
MSE [ROSIS] Scale: log,,
047 bits (Overflow) 0047 bits 025 bits
10.00
00 4.83 3.81 3.66 3.11 3.52
0.00 l | [| [| [| [|
-5.00 PC1 PC2 PC3 L] PC4 Iml PC5 L
-10.00 -6.74 -.35 > -5.62
-15.00
-20.00
-25.00 -20.00 -20.00 -20.00 -20.00 -20.00 -20.00

SQNR and MSE (scaling vs without scaling) with double precision floating-point as the reference

High-level synthesis [HLS] of fixed-point SVD
algorithm on Xilinx Virtex 7 XC7VX485 FPGA

Fixed-point code for HLS is implemented using SystemC

Hardware Cost [Hyperion]
O Without Scaling [147 bits (With Scaling) [25 bits (With Scaling) 27
30
20 14.27 12.72
6.71
10 3.63 6.29 5.34 3.88 5
2 173 162 : 2.86 0.817
. O == C 1 — _o1 045 o4l
FFs (%) LUTs (%) BRAM (%) DSP48 (%) Power (W)
Hardware Cost [ROSIS]
O Without Scaling [147 bits (With Scaling) [25 bits (With Scaling) 27
30
20 14.25 12.72
10 3.64 73 162 6.79 6.32 5.34 3gg 4.96 2 g2 0.78
s [COe— =5 1] 1 . — e a9 04z
FFs (%) LUTs (%) BRAM (%) DSP48 (%) Power (W)

Percentage reduction in hardware cost after scaling

53%-55% in FF (flip flop) 59%-69% in BRAM

o s
53%-56% in LUT (look-up-table) 82%-89% in DSP48 38%-50% in On-Chip power

Backup slides

$ Validated

SQNR and MSE in fixed-point arithmetic (scaling vs
without scaling) with double precision floating-point result
as the reference.

Without Scaling (Overflow, 47 bits)

Without Scaling (Overflow , 47 bits)

SQNR 47 bit
Hyperion 3.73
ROSIS 10.01

MSE | Hyperion ROSIS With Scaling (Overflow-free)

PC1 | 2.0e+05 6.7e+04 SQNR 47 bit | 40 bit | 35 bit | 32 bit | 25 bit

PC2 1.0e+03 6.5e+03

PC3 1.5e+04 4.6e+03 Hyperion | 176.76 | 132.15 | 106.44 | 84.45 | 78.03

PC4 | 262.3714 1.3e+03

PC5 NIL 3.30+03 ROSIS 180.13 | 135.65 | 134.79 | 120.60 | 74.96
With Scaling (Overflow-free)

MSE Hyperion ROSIS
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC5

25 bit 8.1e-7 4.9e-7 3.7e-6 4.3e-6 0 1.8e-7 4.5e-6 6.5e-6 2.4e-6
32 bit 4e-9 1.3e-7 2.1e-6 1.8e-6 o 4.6e-7 3e-6 5.8e-6 2.3e-6
35 bit 0 0 8.5e-7 1.9e-7 0 0 0 0 0
40 bit o 0 9.5e-11 2.2e-9 0 0 0 0 0
47 bit 0 0 0 0 0 0 0 0 0

Reduced Cost & On-chip
Power Consumption

With Scaling
Utilization (%)
Without Scaling COST Hyperion ROSIS
ilizati o/ 25 25 .] .)
COST Utilization (%) > | 32 bit | 35 bit | 40 bit |47 bit| = |32 bit| 35 bit |40 bit | 47 bit
Hyperion ROSIS bit bit

FF 3.63 3.64 FF 1.62 [1.63 [1.67 |1.71 1.73 (1.62 |1.63 (1.67 (1.71 [1.73
LUTs 14.27 14.25 LUT 6.29 1641 |(6.51 |6.56 (6.71 (6.32 |6.48 |6.53 |6.62 |6.79
BRAM 12.72 12.72 BRAM 3.88 |4.17 (4.66 |5.15 (5.34 (3.88 [4.17 |4.66 |5.15 (5.34
DSP48 27.00 27.00 DSP48- 2.86 |3.29 |5 5 5 2.82 (3.25 |4.96 |4.96 |(4.96
IOn-Chip Consumption (W) gn-Chlp Consumption (W)

Power Hyperion ROSIS ower

Power 0.817 0.783 Power 041 (043 |0.43 (045 (045 |0.42 [0.44 (044 |0.46 (0.49

With Scaling
Reduction (%)
COST Hyperion ROSIS
25 bit 32 bit 35 bit 40 bit 47 bit 25 bit 32 bit 35 bit 40 bit 47 bit

FF 55.37 55.09 53.99 52.89 52.34 55.49 55.21 54.12 53.02 52.47
LUT 55.92 55.08 54.37 54.02 52.97 55.64 54.52 54.17 53.54 52.35
BRAM 69.49 67.21 63.36 59.51 58.01 69.49 67.21 63.36 59.51 58.01
DSP48 89.4 87.81 81.48 81.48 81.48 89.55 87.96 81.62 81.62 81.62
Power 49.44 47.73 47.36 44.79 44.55 46.36 43.67 42.91 41.63 37.42

11:

12;
13
14:
15;
16:

25:
26:
27:

28:
29:
30:

ol g O

V=I
for =1 tondo
for : =1 ton do
for j =i+ 1tondo

/* compute = the (4,) submatrix of ATA */

c
b
a=A(:1)" A(:,1);
b= A(,5)] A(:5);
c= A(;, i) TAG, §);
/* compute the Jacobi rotation which diagonalizes
a ¢\
c b
(= (b—a)/(2c);
t = sign(Q)/(I¢] + V1 +¢%);
cs =1/vV1+1t3%
sn=cs-t,
/* update columns ¢ and j of A */
for k=1 ton do
tmp = A(k,1);
A(k,i) =cs-tmp— sn- A(k,j);
A(k,j) = sn-tmp+cs- A(k,j);
end for
/* update the matrix V' of right singular vectors */
for k =1ton do
tmp = V(k,1);
V(k,i) =cs-tmp—sn-V(k,j);
V(k,j) =sn-tmp+cs-V(k,j);
end for
end for
end for

. end for

/* singular values are computed from the norms of the
columns of the final A */
for : =1 tondo
or = 1A D)l
end for
/* the left singular vectors U are computed from the
normalized columns of the final A */
for : =1 ton do
Ul 1) = A(4) o
end for

One-sided Jacobi SVD algorithm
(Hestenes)

