# Assessing Grop Residue Cover and

# Sot Thigs Intensity

Contract Designation

Hydrology and Renote Sensing Laboratory Belits allo, Maryland 1954



## Impacts of management practices on crop yields, soil organic carbon, and water quality

#### Doppler Radar 600-Mile

SiouxWeather Mason Falls •Max Temperature •Minis Temperature •Precipitation •Solar radiation •Relative humidity •Wind speed

#### Soil (by layer)

- Carbon content
- •Texture •Bulk density
- •pH
- •Water content
- •Sum of bases
- •... etc

#### Topography

Slope length
Slope steepness
Elevation
Field size
Lat and Long

# Management Tillage operations Crops Inputs ... etc

Process Models: EPIC, APEX, SWAT, etc

Crop biomass and yield

Soil Organic Carbon

Water Quality

## Tillage intensity is defined by crop residue cover. Crop residue = Portion of a crop that is left in the field after harvest.



Crop residues on the soil surface:
first line of defense against soil erosion
increase soil organic carbon
improve soil and water quality
Management of crop residue cover is an

integral part of conservation tillage.

1.8 4 - 1 1 - 4

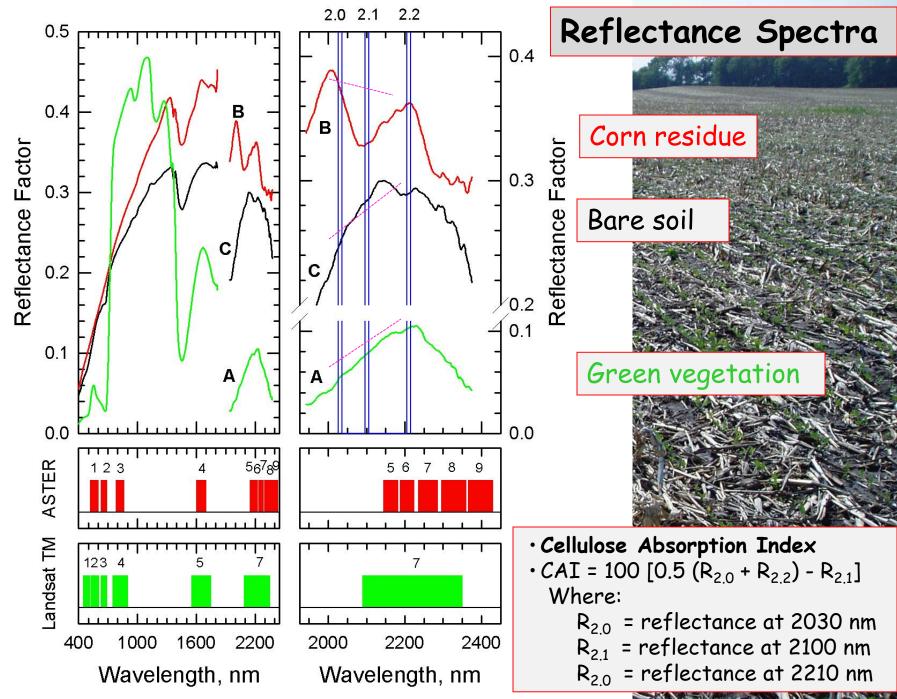
 Soil tillage and biomass harvesting reduce crop residue cover. Conservation till >30% cover

Reduced till 15-30% cover



Intensive till <15% cover

## Current Methods of Measuring Crop Residue Cover


#### Line Point Transect

• Stretch Line-Point Transect across rows and count the number of markers that intersect residue.

#### Windshield Survey

 Trained observers stop at intervals along a fixed route and assess fields on both sides of road.

Traditional methods of measuring crop residue cover are inadequate for many fields and large areas.



MARCH AND

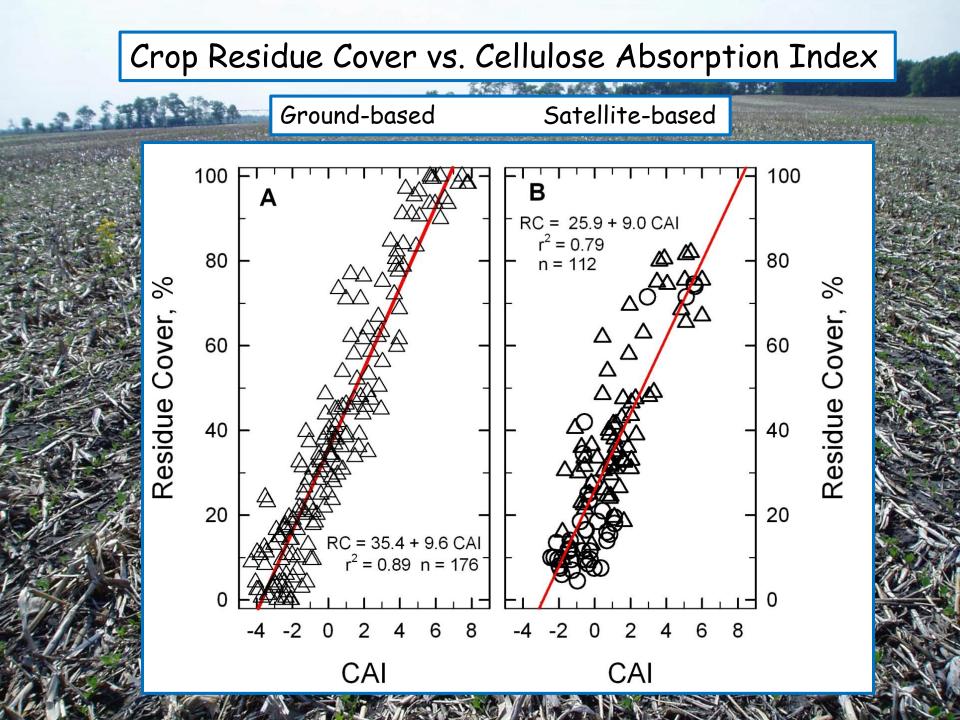
## Scaling-up: Field Reflectance Spectra

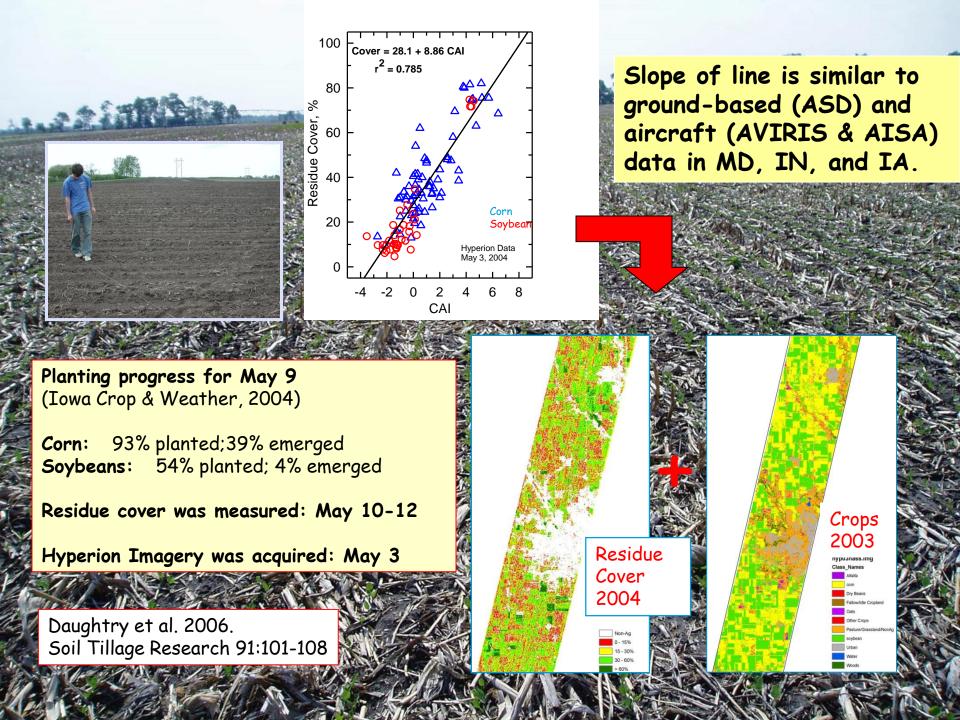
#### Reflectance spectra •ASD Spectroradiometer

- 18-degree fore optics
- 350-2500 nm wavelength range
- Referenced to Spectralon panel

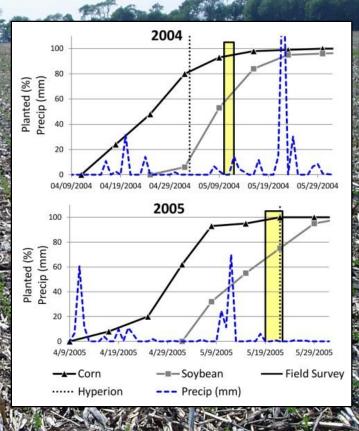
#### ·Digital Camera

- Aligned with FOV
- Cover fractions determined using dot grid overlay.

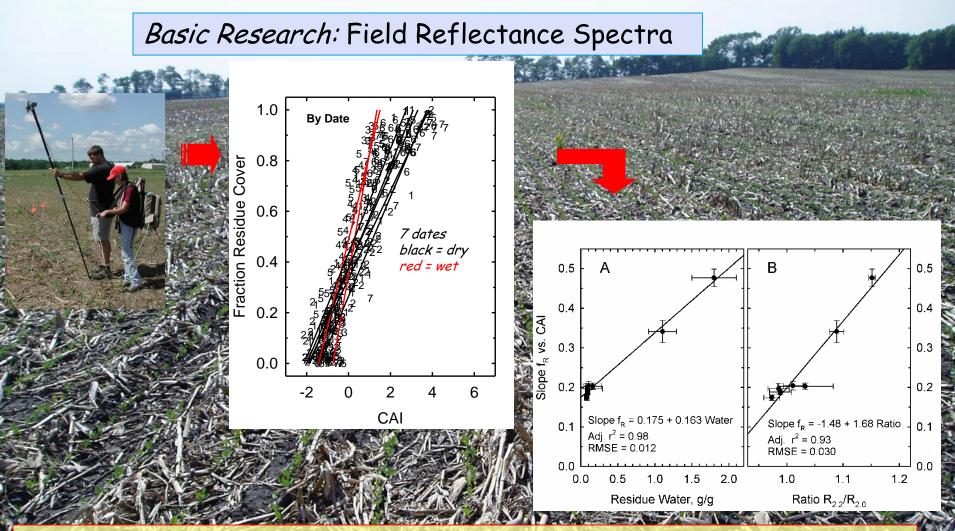

## Scaling-up: Airborne & Satellite Imaging Spectrometers


EO-1 Hyperion • 400-2500 nm • ~10 nm bands • 30 m pixels;

AVIRIS (NASA) • 400-2450 nm • ~10 nm bands • 20 m pixels;


AISA Sensor (SpecTIR)

- 400-2450 nm
- ~5-10 nm bands
- 0.5 to 4 m pixels





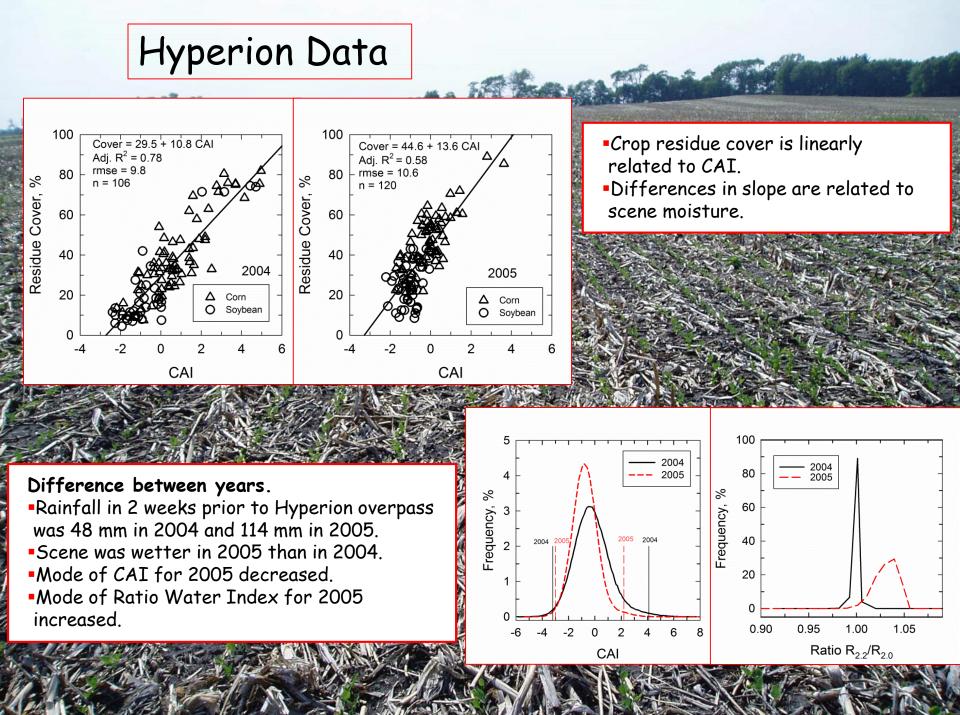

|                 | Residue Cover Category |         |              |     |  |  |
|-----------------|------------------------|---------|--------------|-----|--|--|
| Tillage Class = | Entensive              | Reduced | Conservation | R.A |  |  |
| 3 May 2004      | <15%                   | 15-30%  | >30%         |     |  |  |
| 2003 Crop       | %                      | %       | %            |     |  |  |
| Corn            | 18                     | 36      | 46           |     |  |  |
| Soybean         | 35                     | 40      | 25           | 建   |  |  |
| Overall         | 25                     | 38      | 37           |     |  |  |
| 22 May 2005     | <15%                   | 15-30%  | >30%         |     |  |  |
| 2004 Crop       | %                      | %       | %            |     |  |  |
| Corn            | 7                      | 38      | 55           |     |  |  |
| Soybean         | 3                      | 21      | 76           |     |  |  |
| Overall         | 5                      | 31      | 64           | A   |  |  |



Weather at planting influences tillage intensity.
2004: warm, dry = more intense tillage
2005: cool, wet = less intense tillage
Timing of images relative to planting progress.



#### **Cellulose Absorption Index**


CAI measures the relative intensity of the absorption feature at 2100 nm.

gualtry and H

Crop residue cover is linearly related to CAI, but water in the scene attenuates the reflectance signal and changes the slope of relationship.

to Sensing Environment 19 1647

> A ratio index measured relative scene moisture and improved estimates of crop residue cover.



## Surface Reference Data

|                         |                |                       |                                                | and the second | R > R     |              | 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Princip                   |         |              |                      |
|-------------------------|----------------|-----------------------|------------------------------------------------|----------------|-----------|--------------|-----------------------------------------|---------------------------|---------|--------------|----------------------|
| 2.1                     |                | Sample Scheme         |                                                |                |           |              |                                         |                           |         | n            |                      |
|                         | 1              | All (n=106 or 119     | (n=106 or 119) = all surface reference samples |                |           |              |                                         |                           |         |              | And well-starting of |
|                         | 2              |                       | samples regardless of crop type                |                |           |              |                                         |                           | 10      |              |                      |
|                         | 3              | Cum. Histogram,       | 1% = bare soil; 99%= 75% cover                 |                |           |              |                                         |                           | 2       |              |                      |
| 10                      |                | and the second second |                                                |                |           |              |                                         | Contraction of the second | 124     |              |                      |
|                         |                |                       |                                                | 2004           |           |              |                                         | 2005                      |         |              |                      |
|                         |                | N 1 1                 | Measured                                       | n              |           |              | es                                      | n                         |         | Samp         | es                   |
| T                       | COLUMN ST      |                       | Cover                                          |                | <30%      | _            |                                         |                           | <30%    | <u>≥</u> 30% |                      |
| 2ª                      |                | Store Charles         | 0-30%                                          | 52             | 45        | 7            |                                         | 42                        | 22      | 20           |                      |
| 1                       | - 5            |                       | >30%                                           | 54             | 12        | 42           |                                         | 77                        | 10      | 67           |                      |
| 2                       |                | gre 1754              | Correct                                        |                |           |              | 82%                                     |                           |         |              | 75%                  |
| 12                      | 1 A            | N - ANSE              |                                                |                |           |              |                                         |                           |         |              |                      |
|                         |                |                       |                                                | 5 Low + 5 High |           |              |                                         | 5 Low + 5 High            |         |              |                      |
|                         |                |                       |                                                |                |           | <u>≥</u> 30% |                                         |                           |         | <u>≥</u> 30% |                      |
|                         | 100            |                       | 0-30%                                          | 52             | 36        | 16           |                                         | 42                        | 42      | 0            |                      |
| y, %                    | 80 -           |                       | >30%                                           | 54             | 7         | 47           |                                         | 77                        | 32      | 45           |                      |
| lenc                    | 80 -           | 2005 2004             | Correct                                        |                |           |              | 78%                                     |                           |         |              | 73%                  |
| requ                    | 60 -           |                       |                                                |                |           |              |                                         |                           |         |              |                      |
| ive F                   | 40 - 2004 2005 |                       |                                                |                | Histogram |              |                                         | Histogram                 |         |              |                      |
| Cumulative Frequency, % | 20 -           |                       |                                                |                |           | <u>≥</u> 30% |                                         |                           | <30%    | <u>≥</u> 30% |                      |
| Cum                     |                |                       | 0-30%                                          | 52             | 35        | 17           |                                         | 42                        | 28      | 14           |                      |
|                         | 0              | 202468                | >30%                                           | 54             | 7         | 47           |                                         | 77                        | 15      | 62           |                      |
|                         | -6 -4 -2       | CAI                   | Correct                                        |                |           |              | 77%                                     |                           |         |              | 76%                  |
| _                       |                |                       |                                                | The se Vin     |           |              |                                         | Contraction of the        | 1100004 | SAGES IN     | Sal Color            |

# **Reality Check**

## **Imaging Spectrometers**

- NASA Hyperion launched in 2000.
  German EnMAP scheduled launch: 2018.
- NASA HyspIRI anticipated launch: >2020.

# Advanced Multispectral Systems with SWIR bands

Digital Globe - WorldView-3 (launched 2014)

## Summary

- Spectral indices are robust and linearly related to crop residue cover.
- · Relationships developed with ground-based sensors are extendable to airborne and space-borne sensors.
- Currently images are small no wall-to-wall coverage.

# Reality Check (part 2)

## Multispectral Systems with Broad SWIR bands

- Landsat-7 (launched 1999); Landsat-8 (launched 2013)
- Sentinel-2 (scheduled launch 2015)

#### Summary

- Broad band residue indices are not robust.
- Only a few residue cover classes may be identified.
- Training statistics are not extendable in time or space.
- Soil type, crop type, residue age, and scene moisture affect classifications.
- Images are large and wall-to-wall coverage with both Landsat-8 and Sentinel-2.

# Challenges

How to best use a few Advanced Multispectral and Hyperspectral images and many Landsat and Sentinel-2 to produce surveys of soil tillage intensity at watershed to national scales.

- Use spatial and temporal data fusion models to combine Advanced Multispectral and Broadband Multispectral images (e.g. STAR-FM).
- Use Advanced Multispectral images for a stratified sampling approach to provide reliable ground truth data for Broadband Multispectral data.