The HyspIRI Preparatory Campaign
VSWIR Level 1 and Level 2 Products

Robert O. Green¹, David R. Thompson¹

With much assistance from Bo Cai Gao², Elyse Pennington³, Dar. A. Roberts⁴, Phil Dennison⁵, Sarah Lundeen¹

¹ Jet Propulsion Laboratory, California Institute of Technology
² Naval Research Laboratory
³ Harvey Mudd College
⁴ University of California, Santa Barbara
⁵ University of Utah
⁶ NASA Ames Research Center

Copyright 2015 California Institute of Technology. This research has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NASA programmatic support through ESTO and Terrestrial Ecology programs is gratefully acknowledged.
Agenda

• AVIRIS Product Definition and Algorithm Theoretical Basis
• Overview of the VSWIR HyspIRI simulated data
AVIRIS radiance / reflectance pipeline

Lambertian Reflectance (HDRF)

Radiance at sensor mW/nm/cm²/sr

Raw Digital Numbers

[Gao et al., 1993; Green et al., 1998]
L1 Radiance calibration

- Based on Laboratory calibration standards
- Minor radiometric correction in UV based on clouds (which are assumed smooth)

Assumed reflectance

Retrieved reflectance

Courtesy Bo Cai Gao
Typical vegetation spectrum

After

Before

Courtesy Bo Cai Gao
Solar spectrum F (modified Kurucz)

Top of atmosphere apparent reflectance ρ

$\rho = \frac{\pi L}{F \cos(\theta)}$

Retrieve pressure altitude, H$_2$O vapor, liquid by fitting absorption features

Aerosol particle type distribution, AOD at 550nm

Calculate molecular & aerosol scattering w/6s radiative transfer code

Gaseous transmission T_g

Aerosol transmission T_dT_u

Spherical sky albedo s,
Path reflectance r_a

Reflectance spectrum

$\rho / T_g - r_a$

Residual suppression based on a reference target

Corrected reflectance spectrum

6/18/2015

David.R.Thompson@jpl.nasa.gov

L2 Surface reflectance
Typical transmittance

Absorption is modeled for 7 gases

ATREM retrieves water vapor for each pixel using 0.94 and 1.14 μm H₂O band depths

Vertical profiles use 20-layer atmospheres

[Gao and Green 2010]
Reducing bias in H$_2$O vapor maps

Pressure Altitude Retrieval

Pressure Altitude LUT

TOA Reflectance → O$_2$ A Band Ratio

H$_2$O Band Ratio

Nonnegative Least Squares

Path Lengths

H$_2$O Retrieval

Linearized fit

Model

Observed

TOA Reflectance

Wavelength (nm)

Transmittance

% Residual (model−measured)

Wavelength

Liquid

Vapor

Better H$_2$O Vapor Maps

From Pennington et al., AGU 2015
Residual suppression

- Multiplicative correction
- Derived from a smooth surface once per flight season
- Reversible using coefficients stored in metadata
Ground truth validation targets

- Dark targets too bright, bright targets too dark
- This suggests uncorrected scattering is a major offender
- Accuracy degrades somewhat at short wavelengths
- Water vapor maps (not shown) still show some “vegetation bias”

![Graphs showing reflectance vs wavelength for different targets.](image)

Courtesy Dar Roberts from Thompson et al., RSE 2015 (in press)
Agenda

• Product Definition and Algorithm Theoretical Basis

• Overview of the HyspIRI simulated data
HyspIRI simulation objective

• Create orthorectified reflectance data with similar spatial and noise characteristics to the HyspIRI VSWIR
• Demonstrate processing pipeline that is scalable to anticipated HyspIRI data rates
• Demonstrate L2 algorithms operating across large, diverse geographic areas
HyspIRI simulated data products

Products:
- 18m, 30m, 60m obs
- 18m, 30m, 60m radiance
- 18m, 30m, 60m optical paths for H₂O
- 18m, 30m, 60m reflectance

AVIRIS Calibrated Radiance 677 pixel swath

x,y,z coordinates of pixel centers (Boardman)

18m nearest neighbor resampling

30m Gaussian resampling

60m Gaussian resampling

HyspIRI NEdL added

HyspIRI NEdL added

ATREM

ATREM

ATREM

Courtesy Phil Dennison
Data access instructions: