

National Aeronautics and Space Administration Goddard Space Flight Center

# Lunar metrology for satellite instrument characterization

Joel McCorkel Biospheric Sciences, Code 618

#### Calibration approaches for climate measurements

Last year's talk was a discussion of complementary laboratory and on-orbit calibration methods for climate measurements



CLARREO Mission

High accuracy calibration requirements

- SI traceability in the laboratory NIST's SIRCUS (detector-based calibration with laser sources) Calibration of G-LiHT, ORCA, SOLARIS (CLARREO), HyPlant, VIIRS
- Model-based sensor inter-calibration
  Value of imaging spectrometer for site characterization



### **CLARREO** calibration approach





### Sensor characterization

- Spectral/Radiometric
- Linearity
- Spectral out-of-band response
- Stray light
- Polarization response
- Optic degradation







- Laboratory calibration using incandescent sources SpMA for RSR and lampilluminated integrating sphere for absolute gain setting is 2 % to 3 %\*
- On-orbit calibration using the solar diffuser with a solar attenuator screen is at its limit at ~ 1.6 % at best due to uncertainty in solar spectral irradiance (2 % to 3 % in Vis/NIR and 5 % or larger in SWIR)
- SIRCUS-based calibration at 0.2 %, can achieve 0.1 %
- Ignoring Vicarious Calibration option in the Transfer-to-Orbit column

| Uncertainty<br>Estimates                              | Laboratory<br>Calibration | Transfer to<br>Orbit | Trending<br>(MOON) | Combined<br>Standard<br>Uncertainty |
|-------------------------------------------------------|---------------------------|----------------------|--------------------|-------------------------------------|
| SpMA-based                                            | 2 -3 %                    | 2 % to 3 %           | 0.1% to 0.2%       | 3.5 %                               |
| SIRCUS-based                                          | 0.5 %                     | 2 % % to 3 %         | 0.1% to 0.2%       | 3 %                                 |
| Potential<br>w/1 % lunar cal-<br>based Xfer to Orbit  | 0.5 %                     | 1 %                  | 0.1% to 0.2%       | 1.25 %                              |
| Potential w/0.25%<br>lunar cal-based<br>Xfer to Orbit | 0.1 %                     | 0.25 %               | 0.1 %              | 0.3 %                               |

\*Butler, et al., Proc. SPIE 6677, 667707 (2007).



- USGS measurement/model
- NIST measurements
- CLARREO
  - Climate Absolute Radiance and Refractivity
    Observatory
- Satellite measurements
- EO-1 Hyperion measurements

### **USGS ROLO**

#### RObotic Lunar Observatory *T. Stone and H. Keiffer*

- Capture and model the moon's spectral and radiometric signal throughout its phase and librations.
- Measurements
  - 23 VNIR, 9 SWIR bands
  - 85k lunar images over 6 years
- Uncertainties
  - 5-10%





### **NIST lunar measurements**

#### Mt Hopkins, AZ



#### Steve Brown Keith Lykke Claire Cramer John Woodward NIST Gaithersburg, MD

measured lunar irradiance, 2012.1129







#### NIST-measured Irradiance/ROLO-predicted Irradiance





### NIST measurement uncertainty

#### Combined Standard Uncertainty in Lunar Irradiance Spectral Irradiance of the Moon at 11:40:43 on 30 November, 2012 UT

| Wavelength<br>(nm) | Spectral irradiance<br>(µW m <sup>-2</sup> nm <sup>-1</sup> ) | Uncertainty<br>(percent) |
|--------------------|---------------------------------------------------------------|--------------------------|
| 449.7              | 2.348                                                         | 0.85                     |
| 499.9              | 2.395                                                         | 0.56                     |
| 550.0              | 2.633                                                         | 0.45                     |
| 600.2              | 2.669                                                         | 0.44                     |
| 650.1              | 2.598                                                         | 0.40                     |
| 702.8              | 2.474                                                         | 0.38                     |
| 750.0              | 2.314                                                         | 0.37                     |
| 850.2              | 1.870                                                         | 0.36                     |
| 1000.2             | 1.387                                                         | 0.54                     |

Over this spectral range:

- Magnitude and an uncertainty (at the particular phase and libration angles) with the telescope calibration tied to the SI.
- Provides a means to <u>re-scale the ROLO Model</u> (by the TOA Lunar Irradiance) and to <u>develop a constrained uncertainty budget</u> including phase and libration uncertainties and <u>establish traceability to the SI</u> for the ROLO Model-predicted lunar irradiances



#### **CLARREO** measurements at Goddard



**CLARREO** calibration demonstration system



X IDL 0





### Space-based measurements



### Landsat 8 measurements



#### HyspIRI Symposium





#### Gene Eplee, NASA Goddard

SeaWiFS used the Moon to trend Responsivity with an Uncertainty of 0.13 %.

#### Aug. 1, 1997 – Dec. 10, 2010

Avg. Sea-surface Chl-a, 1998-2006



#### Chl concentration [mg chl m<sup>-3</sup>]

#### SeaWiFS Bands

|         | Band Center |           |
|---------|-------------|-----------|
| SeaWiFS | Wavelength  | Bandwidth |
| Band    | [nm]        | [nm]      |
| 1       | 412         | 20        |
| 2       | 443         | 20        |
| 3       | 490         | 20        |
| 4       | 510         | 20        |
| 5       | 555         | 20        |
| 6       | 670         | 20        |
| 7       | 765         | 40        |
| 8       | 865         | 40        |



#### **Lunar Measurements**

Top Plot: Inherent scatter in a series of lunar measurements at 412 nm Bottom Plot: binned residuals plotted a

Bottom Plot: binned residuals plotted as means with STDs (412 nm)

- Phase dependence (Phase Angle):
  - MODIS Aqua: 1.1 % from -80° to -51°; Terra 1.5 % from 52° to 82°.
  - SeaWiFS: 1.7 % from -45° to -6° and 5° to 56°

Uncertainty in lunar irradiance v phase : 1.7 % (-80° to -6° and 5° to 82°)

 USGS Model uncertainty 1 % (from a much larger database of lunar measurements)

Phase Dependence from Eplee, et al., Appl. Opt. 50, 120 (2011). presented by Jim Butler at the 2012 Lunar Irradiance Workshop



#### Hyspl



### Pléiades

## Phase dependence of ROLO Model in comparison with MODIS and Pleiades-1B measurements



Ignoring the 6 % Bias for PLEIADES and the 2 % Bias for SeaWiFS, Phase Meas/Model Ratio v Phase Angle Is very similar to the SeaWiFS Phase Dependence.

Xiong, et al., Comparison of MODIS ands PLEIADES Lunar Observations, Proc. SPIE 9241, 924111 (2014).



### What's missing?

- full spectrum lunar signal (solar reflective)
- dense lunar phase and temporal sampling
- absolute accuracy, current is 5-10%
- 1–2.5 μm spectral region
- As Hyperion begins to take more measurements of the moon:
  - Substantially increase science value of mission
    - The data set would become the on-orbit standard for linking earth observing sensors throughout time
    - Better link historical EO-1 data sets.
    - Link with CLARREO Pathfinder
  - Create New baseline for moon
    - Full solar reflective spectrum, including 1–2.5  $\mu$ m spectral region
    - 2-3% absolute accuracy
    - Would be best with dense sampling for phase coverage and statistics

