

Observing Volcanic Eruptions with Earth-Observing 1: Smart Software, and the Volcano Sensor Web

Ashley Davies

Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA

HyspIRI Symposium, Washington, DC, 4 June 2015

- EO-1 has been a superb platform for detecting and monitoring volcanic activity (inc. making exceptional use of nighttime data)
- Also for technology demonstrations:
- Autonomous Sciencecraft Experiment ASE
 - New Millennium Program Space Technology-6
- Orbital asset incorporated into Sensor webs flood, fire, volcanoes
 - Volcano Sensor Web (VSW)
 - Template for HyspIRI

JPL-ASE used advanced autonomy software to:

- Automate spacecraft retasking based on eruption detections using a globe-spanning Volcano Sensor Web (VSW)
- Streamline spacecraft operations
- Process data thus obtained
- Deliver products to end-users

The entire process is autonomous – for when speed is vital

Planetary Applications

Volcanism across the Solar System

- Io, Enceladus, Triton = active
- Possibility of activity: Europa, Titan
- Possible future NASA missions:
 - Europa (NASA Flagship-class mission)
 - Io Volcano Observer (Discovery or NF class)
- Use of autonomy expedites event detection: allows retasking to observe dynamic events
 - Of greatest value during orbital reduction and mapping phases of potential Europa mission
 - Rapid processing of data identifies target process

Enceladus Explorer concept

Europa mission concept

Titan Orbiter – Aerobot concept

lo Volcano Observer concept

VSW data flow

4. Ground-based workflow 1. System trigger 2. System response 3. Orbiting asset Spacecraft Data **Processing Systems** - MODIS (MODVOLC, UH) - GOES (GOESVolc, UH) * **Automatic Data Processing** EO-1 spacecraft Volcanic Ash - Systematic processing to L1R, - Hyperion Alerts L1G - ALI - VAAC - USAF (AFWA) VSW Resource Automatic Generation of Planner **Processing of data** Products - SEM Ground sensor (ASE) - Extraction of eruption - CASPER nets parameters - MEVO - IMO Rapid downlink of data - CVO * - Onboard products - HVO - Raw data Posting of results - SO₂ monitors * - online - email to selected users Other sources - Fmail - Broadcast news - Other media - etc.

* Triggering from this source not currently active

EO-1 and volcanic activity

- EO-1 launched 21 Nov 2000 (NASA-GSFC)
- High-inclination orbit (89°)
- Nominal 16-day repeat time (day, nadir)
- Night = better for detection of thermal emission
- EO-1 is pointable across-track E and W

Yields 10 opportunities per 16 days (d, n) at mid-latitudes, more at high latitudes.

Hyperion

0.4-2.5 μm 220 bands, 30 m/pixel spatial resolution 7.7 km wide swath

ALI - Advanced Land Imager 9 bands 0.4-2.5 µm, 30 m/pixel PAN band, 10 m/pixel ~30 km wide swath

Hyperion

Advanced Land Imager

Hyperion and ALI footprints

This is daytime (descending): nighttime (ascending) is reversed left to right

NASA

EO-1 and volcanic activity

- Hyperion is great for imaging erupting volcanoes
- Wavelength range is sensitive to pixel brightness temps >450 K

If data saturated at longer wavelengths, shorter wavelengths usable for fitting blackbody curves: see Wright *et al.*, Davies *et al.* pubs.

EO-1 and volcanic activity

- Identify thermal anomalies
- Locate vents (e.g., Nyamulagira, 2006 in midst of crisis, EO-1 only asset to do this close to eruption onset)
- Map thermal anomalies (also fires → JPL-Thailand Fire S/W)
- Quantify and map thermal emission
- Estimate discharge rate
- Chart eruption evolution

NASA

Autonomous Sciencecraft on EO-1

- ASE is flight-proven technology
 - NASA New Millennium Program ST-6 Project

Onboard Science Data Processing

Autonomous Planning (CASPER)

- Autonomous Execution Software (Spacecraft Command Language)
 - Subsystem demonstration
 - Funded to flight demonstrate autonomy software technology for future mission adoption
 - Uses the Hyperion instrument (hyperspectral, 220 bands, 30 m resolution)

Also on *EO-1* – Advanced Land Imager (ALI)

See Chien et al., 2005; Davies et al., 2006, RSE; Doggett et al., 2006, RSE

Hyperion

Advanced Land Imager

Hyperion and Science Classifiers

- EO-1 Hyperion instrument
 - High spectral resolution imaging spectrometer
 - 220 bands from 0.4 to 2.4 μ m (SWIR)
 - 30 m/pixel spatial resolution
- ASE Science Classifiers
 - THERMAL_CLASSIFIER (Davies *et al.* 2006, RSE) uses 4 bands
 - 7.7 km x ~30 km coverage area
- Thermal Summary Product
 - Extracts 12 wavelengths per pixel
 - Returns this information as very small file (~20 kB), with telemetry
 - If rest have to be discarded, the science content is preserved
 - Rapid alert of activity, plus data for quantitative analysis for hazard assessment: typically ~90 mins.

Eyjafjallajökull, 2010

JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH, VOL. 118, 1936–1956, doi:10.1002/jgrb.50141, 2013

Observing Iceland's Eyjafjallajökull 2010 eruptions with the autonomous NASA Volcano Sensor Web

Ashley Gerard Davies,¹ Steve Chien,¹ Joshua Doubleday,¹ Daniel Tran,¹ Thorvaldur Thordarson,^{2,3} Magnús T. Gudmundsson,³ Ármann Höskuldsson,³ Steinunn S. Jakobsdóttir,⁴ Robert Wright,⁵ and Daniel Mandl⁶

Received 14 November 2012; revised 5 February 2013; accepted 19 February 2013; published 9 May 2013.

- We first became aware of Eyjafjallajökull (Fimmvorduhals) eruption on Saturday 20 March 2010 – ABC Evening News
- Updated operations planning software (a result of ASE) allowed fast, easy retasking of *EO-1*
- First data obtained and returned on 24 March 2010
- Between 24 March and 5 June, 50 observations pairs were obtained
 - Fimmvorduhals day 8 Fimmvorduhals night 7
 - Eyjafjallajökull day 18 Eyjafjallajökull night 17
- 50% of observations heavily impacted by clouds

24 March 2010 E01H2180152010083110KF - Hyperion

VSW automatic products

Map of hot pixels

VSW automatic products

Fit to spectrum to quantify thermal emission

Davies et al. (2013) JGR

VSW automatic products

VSW data processing

- 1-T fit to unsaturated data of spectra identified as thermally anomalous
- From these 1-T fits, area is found and total power calculated
- This is converted into an effusion rate (min. value)

Harris et al., 1999; Harris and Thornber, 1999

 Q_F = effusion rate, such that

$$Q_F = \frac{Q_{TOT}}{\rho_{lava} \left(c_p \,\Delta T + L \,\Delta f \right)}$$

 Q_{TOT} = total heat loss = $Q_{rad} + Q_{conv} + Q_{cond}$ ρ_{lava} = lava density (2600 kg/m³) ΔT = temperature range through which the lava has cooled (200 K) L = latent heat of fusion (3 x 10⁵ J/kg) c_p = lava specific heat capacity (1150 J/kg/K) Δf = change in crystallization fraction over ΔT (0.45)

"One size fits all" – a trip wire, and for relative comparison from observation to observation

1 April 2010 - Fimmvorduhals E01H2180152010091110PF

7.7 km

Davies et al. (2013) JGR

1 April 2010 - Fimmvorduhals E01H2180152010091110PF

Thordarson and Hoskuldson, pers. comm.

Ν

- 1 Lava fountains
- 2 Lava flow
- 3 Lava flow
- 4 Lava tube
- 5 Lava flow
- → Thermal "echo"

Myrdalsjökull

Katla

Fimmvorduhals

Eyjafjallajökull

ALI - 17 April 2010

Davies et al. (2013) JGR

VSW and products are of most value where time is crucial and/or locations are remote/not accessible \rightarrow Nyamulagira, 2006

The best "customer satisfaction" results from pre-determined agreements with individual end users, because in the middle of a volcanic crisis...

- local authorities work to the plan in place
- time commitment is already 100% "what's this?"
- it is not clear to whom products should be sent

Solution: make products available, and publicise availability

- working to make VSW products widely accessible beyond JPL
- triggering from updates to GVN
- talking endlessly about it \rightarrow e.g., Pavlof, 16 Nov 2014

VSW provided data to HVO during "27 June" Pahoa crisis (Patrick *et al.,* 2015)

VSW worked like a charm during the 2014-2015 Nornahraun (Iceland) eruption

- Many EO-1 observations of Nornahraun
- Quick processing and delivery of data and products

... A template for future HyspIRI operations and data processing and dissemination

Kilauea volcano, HI: Flows threatening Pahoa

8 September 2014: ALI observation E01A0620462014251110KH

Puyehue, Chile – 14 June 2011

Combined Hyperion/ALI L1G product - NASA/JPL/EO-1/GSFC/Ashley Davies

Nornahraun- 3 Sept 2014

Tolbachik: 1 December 2012

EO-1 ALI: NASA Earth Observatory image by Jesse Allen

ASE and VSW volcano observations May 2004 - Feb 2013

Total: 4956, including: 576 Erebus; 171 Mt St Helens; 89 Erta 'Ale; 82 Etna

Acknowledgements

A large cast over the years!

Thanks to the *EO-1* MSO GSFC, JPL ASE Project VSW Project

Backup slides

Figure 3. Davies et al., 2006, RSE.

