

VIIRS Bias Analysis using Hyperion

Sirish Uprety and Changyong Cao CIRA, Colorado State University and NOAA/NESDIS/STAR

Outline

- Objective
- Introduction
- S-NPP VIIRS on-orbit radiometric performance
 - Calibration Sites used:
 - Libya-4 and Sudan-1 Desert sites
 - Antarctica Dome C
 - Methodology
 - Results and Analysis
- GOSAT TANSO-FTS comparison with EO-1 Hyperion
- Summary

Objective

• Assess the radiometric performance of Suomi NPP VIIRS

Introduction

- Radiometric performance can be independently analyzed through:
 - Onboard calibration system
 - calibration sites such as desert, ocean, snow, DCC.
 - Exo-terrestrial targets such as moon, stars etc.
 - Inter-calibration with other well calibrated radiometers (SNO/SNO-x, stable desert targets etc).
- VIIRS radiometric bias is analyzed through intercomparison with AQUA MODIS over
 - Libya-4 and Sudan-1
 - Antarctica Dome C
- Spectral differences analyzed using EO-1 Hyperion.
- In addition, GOSAT FTS is compared with Hyperion over CO₂ absorption region to analyze radiometric differences.

Calibration Sites Used

Libya-4 and Sudan-1

- Libya-4 (28.55, 23.39) is a CEOS endorsed cal/val site.
- Both Libya-4 and Sudan-1 are Saharan desert sites used mostly for on-orbit cal/val of VNIR radiometers.
- Sudan-1 (21.74, 28.22) is used by NOAA series AVHRR for post-launch relative calibration.
- VIIRS nadir observations are collected to study the radiometric performance.

<u>Antractica Dome C</u>

- Dome C (-75.102°, 123.395°) is also a CEOS cal/val site.
- Large homogenous snow field in Antarctica at an altitude of 3.2 km
- high altitude; high reflectance; > 75% of cloud-free time; low water vapor content; very cold and dry climate; low aerosol and dust etc.
- Limitations: accessibility, availability of data only during austral summer, high BRDF, not visible by GOES/GOES-R instruments etc.

VIIRS and MODIS RSR

	VIIRS		MODIS
Band	Wavelength (µm)	Band	Wavelength (µm)
M1	0.402 - 0.422	8	0.405 - 0.420
M2	0.436 - 0.454	9	0.438 - 0.448
M3	0.478 - 0.498	10	0.483 - 0.493
M4	0.545 - 0.565	4	0.545 - 0.565
M5	0.662 - 0.682	1	0.620 - 0.670
M7	0.846 - 0.885	2	0.841 - 0.876
M8	1.230 - 1.250	5	1.230 - 1.250
M10	1.580 - 1.640	7	1.628 - 1.652
M11	2.225 - 2.275	6	2.105 - 2.155

Rad. Performance over Desert

- Doesn't indicate long-term upward or downward trends over the period.
- Seasonal oscillation is mainly due to annual solar zenith change
- Calibration stability is better than 1%

VIIRS Bias Relative to MODIS

VIIRS		MODIS		Libya-4	Sudan-1
Band	Wavelength (µm)	Band	Wavelength (µm)	Bias @ sol	lzen=18°
M1	0.402 - 0.422	8	0.405 - 0.420	$1.65\% \pm 0.31\%$	$1.54\% \pm 0.24\%$
M2	0.436 - 0.454	9	0.438 - 0.448	$0.31\% \pm 0.42\%$	$0.15\% \pm 0.27\%$
M3	0.478 - 0.498	10	0.483 - 0.493	$1.32\% \pm 0.42\%$	$1.36\% \pm 0.28\%$
M4	0.545 - 0.565	4	0.545 - 0.565	$-0.23\% \pm 0.39\%$	$-0.04\% \pm 0.35\%$
M5	0.662 - 0.682	1	0.620 - 0.670	$9.5\% \pm 0.40\%$	$10.05\% \pm 0.54\%$
M7	0.846 - 0.885	2	0.841 - 0.876	$3.95\% \pm 0.53\%$	$3.99\% \pm 0.64\%$
M8	1.230 - 1.250	5	1.230 - 1.250	$2.74\% \pm 0.64\%$	$2.96\% \pm 0.84\%$
M10	1.580 - 1.640	7	1.628 - 1.652	$0.54\% \pm 0.41\%$	$0.85\% \pm 0.39\%$
M11	2.225 - 2.275	6	2.105 - 2.155	$-6.3\% \pm 0.96\%$	$-5.61\% \pm 0.98\%$

- Large BRDF
- Some VIIRS bands agree well with MODIS and some suggest large bias.
- MODIS matching bands for M2 and M3 are saturated at larger solar elevation.

VIIRS		MODIS		Dome C
Band	Wavelength (µm)	Band	Wavelength (µm)	Bias @ solzen=18°
M1	0.402 - 0.422	8	0.405 - 0.420	$-0.14\% \pm 0.65\%$
M2	0.436 - 0.454	9	0.438 - 0.448	$-0.50\% \pm 0.67\%$
M3	0.478 - 0.498	10	0.483 - 0.493	$-0.20\% \pm 0.79\%$
M4	0.545 - 0.565	4	0.545 - 0.565	$1.62\% \pm 1.64\%$
M5	0.662 - 0.682	1	0.620 - 0.670	$5.00\% \pm 1.28\%$
M7	0.846 - 0.885	2	0.841 - 0.876	2.93% ± 1.44%

Spectral Characteristics Using Hyperion

- Dome C is more flat in VNIR region whereas desert sites are better for longer wavelengths.
- Observed bias depends on target spectral characteristics and RSR differences.
- Large bias for some VIIRS bands exists mainly due to the differences in spectral response functions of instruments.
- If the spectral characteristics of the sites are well characterized, the impact of spectral differences in inter-comparison can be accounted.

Bias Induced due to Spectral Differences

- Residual bias (RB): Observed bias Spectral bias
- Residual bias exists mainly due to uncertainties in calibration, spectral bias estimation, atmospheric absorption variability, collocation error, BRDF.
- In an ideal case, the residual bias should be close to zero regardless of the target chosen.
- Simulated reflectance for VIIRS and MODIS is estimated by convolving Hyperion measurements with instrument RSRs.

-2.21%	-
	-
	-
	10

Modeled Bias

Sudan-1

-0.26%

-0.31%

0.35%

-1.71%

7.62%

0.79%

0.11%

Dome C

-0.76%

-1.01%

-1.04%

-0.06%

2.31%

-0.38%

0.81%

VIIRS Bias

- VIIRS residual bias at three sites (Libya-4, Sudan-1 and Dome C) agree to within 1% for bands M1 to M7 and M10.
- M8 indicate larger bias and uncertainty over Dome C.
- After accounting for spectral differences, VIIRS and MODIS agree to within $2\% \pm 1\%$ for bands M1 through M5.
- M7-8 and M10 indicate bias on the order of 3%.

GOSAT TANSO-FTS

- CONTRACTOR CONTRACTOR
- The Greenhouse gases Observing SATellite (GOSAT) was launched on January 23, 2009
- TANSO-FTS (Fourier Transform Spectrometer):
 - RSB bands: 0.76, 1.64, and 2.00 um
 - Spectral resolution: 0.2 wavenumbers (about 0.05 nm at 1.6 μm)
 - Spatial Resolution: ~10.5 km
- Incoming light splits into two orthogonally polarized components (P and S components) and measured independently.
- FTS Calibration: Solar Irradiance, Deep Space, Moon, Diode Laser.

	GOSAT FTS	VIIRS
B1	0.757-0.775 μm	-
B 2	1.562 -1.724 µm	1.58-1.64 µm
B3	1.923-2.083 μm	-

Figure. GOSAT FTS Band 2 (1.6 μ m) along with Hyperion reflectance (57 observations) over Libya-4. VIIRS M and I bands are completely covered by FTS L1b spectra.

GOSAT FTS measurements near Libya-4 are higher than Hyperion

Hyperion and GOSAT FTS Comparison

- Hyperion and FTS measurements are convolved with VIIRS.
- Bias is clearly observed: larger inconsistency with S polarized light compared to P polarization.
- Inconsistency between S and P polarized measurements ranges from about 1.2% @ 16° solzen to nearly 3% at 55° solzen.
- Larger discrepancy between Hyperion and FTS could be due to a number of reasons such as use of different solar models (Hyperion: CHKUR and FTS: Kurucz), collocation error, BRDF, low spectral resolution of Hyperion and calibration uncertainties.

Hyperion and GOSAT FTS Comparison

- Hyperion and FTS measurements are convolved with VIIRS and plotted.
- Larger bias with S polarized light compared to P polarization.
- Inconsistency between S and P polarized measurements ranges from about 1.2% to nearly 3%.
- Larger discrepancy between Hyperion and FTS could be due to a number of reasons such as use of different solar models (Hyperion: CHKUR and FTS: Kurucz), collocation error, BRDF, low spectral resolution of Hyperion and calibration uncertainties.

Summary

- VIIRS bias over Libya-4, Sudan-1 and Dome C suggest bias on the order of $2\% \pm 1\%$ or less for most of the bands analyzed.
- VIIRS calibration stability and radiometric accuracy computed at Libya-4 and Sudan-1 sites agree very well to within 1%.
- Hyperion observations are used to quantify the impact due to spectral differences between matching bands.
- Hyperion relative radiometric accuracy is also analyzed using GOSAT FTS for CO_2 absorption band near 1.6 μ m.
- Preliminary results indicate that FTS measurements are higher than Hyperion. Further investigation needed!